大数据如何快速落地的战略方法
数字信息大爆炸,世界潮流浩浩荡荡,大数据时代已然来临。您的公司将如何应对大数据时代的挑战呢?战略决定未来的发展方向。没有清晰的大数据战略,不了解大数据,您的公司将如同盲人摸象般不仅无法驾驭大数据,而且会被大数据淹没。那大数据如何落地,本文主要讲大数据战略落地。
为了什么需要考虑大数据战略呢?
据调查显示,大中型企业,甚至中小规模的企业都意识到,大数据可以为他们的业务带来好处,以及提升他们企业的竞争力。
调查显示,这些中小企业比其更大规模的竞争对手更加快速的利用大数据。虽然大多数受访者承认大数据价值,然而,不同的受访者对大数据这一术语有着不同的理解。28%的受访者把大数据定义为交易数据的海量增长,而24%的受访者形容它是一种新技术,帮助企业迎接海量数据的挑战。18%把大数据定义为从社会媒体、移动设备和终端设备所产生的海量信息,而19%把它理解成合规性的存储和归档数据。
无论怎样定义大数据,据调查结果显示,大中小型企业知道大数据可以带来诸多好处。
每家公司都应该思考大数据战略,无论他们公司规模是大还是小。大数据融合了社交媒体、终端设备、移动设备和企业内部等的数据,它正在史无前例的增长。没有创建大数据战略的企业将在新一轮竞争中迷失,而创建了大数据战略的企业,将受益于大数据的即时访问数据和即时洞察力的能力,它使得企业在为自己的客户群服务时,企业可以采取更敏捷的业务操作,更好地吸引并留住客户。
大数据会给企业带来什么样的影响?
从“直觉主义”到量化分析,企业管理让大数据做主,大数据战略成为新的竞争战略的支撑,大数据变革企业决策。
目前,传统的企业管理流程是出现问题、逻辑分析、找出因果关系、提出解决方案,使问题企业成为优秀企业,这是逆向思维模式。大数据竞争战略咨询流程是收集数据、量化分析、找出相互关系、提出优化方案,使企业从优秀到卓越,是正向思维模式。
“数据是未来竞争优势的基础,将是重要的资源。” “云计算、移动互联网、社交网络和大数据正快速发展,这样的技术进展将改变企业运营的方方面面。”大数据将改变企业决策、价值创造和价值实现的方式。以后,更多的决策将基于大数据分析而不是个人直觉。
大数据时代最大的转变是放弃对因果关系的探寻,取而代之关注相关关系,这是舍恩伯格在《大数据时代》中的描述。也就是说只要知道“是什么”,而不需要知道“为什么”。这与现有科学研究思维惯例不同,对人类的认知和与世界交流的方式提供了全新的模式。舍恩伯格指出大数据应用的三个思维变化:随机样本到全体数据;精确性到混杂性,尤其是大数据的简单算法比小数据的复杂算法更有效;因果关系到相关关系。
大数据的技术挑战显而易见,但其带来的管理挑战更为艰巨要从高管团队的角色转变开始。大数据最重要的就是它会直接影响企业怎样做决策、谁来做决策。在今天的整个商业世界中,人们仍然更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂且没有被数字化的时代,让身居高位的人做决策是符合实际情况的。这种决策者和决策过程是直觉主义流派,现在这种方式遭遇了大数据的挑战。
基于大数据平台的量化分析
大数据挑战直觉,首先要做的是量化分析。企业管理学界因观点不同而分为众多派系,但是“不会量化就无法管理”的理念却是共识。这一共识足以解释近年来的数字大爆炸为何无比重要。有了大数据,管理者可以将一切量化,从而对公司业务尽在掌握,进而提升决策质量和业绩表现。
此处的大数据的量化分析与传统的“数据分析”有相同之处,大数据也力图从数据中收集智慧,并将其转化为企业的优势。不同之处在于大数据数据量巨大、产生数据速度快、种类多样。当一个数据源具备这三个性质的时候,它就形成一个平台。那些天生带有数字基因的企业,比如谷歌和亚马逊,已然是大数据平台。但是,对于传统企业而言,运用大数据获得竞争优势的潜力可能更大。企业可以做精准的量化和管理,做更可靠的预测和更明智的决策,可以在行动时更有目标、更有效率。
伴随商业世界其他一些深刻的变革,公司向“大数据驱动”转型必将遭遇巨大的挑战,它需要管理者具有放手让“大数据说话”的意识、对大数据量化分析的能力、利用大数据提升业绩的管理能力。
大数据决定业绩
如何运用大数据提升公司业绩?各行各业对大数据的态度和应用方法五花八门。但是,其中有一定的关联性:越是那些自定义数据驱动型的公司、平台型公司,越会客观地衡量公司的财务与运营结果。
大数据带来更准的预测,更准的预测带来更佳的决策和管理,零售业也有这样的案例。美国零售巨头西尔斯公司收集其专售的三个品牌的客户、产品以及销售数据,从这些海量信息中挖掘价值。大数据潜在价值巨大,挖掘的困难也巨大:这些数据需要超大规模分析,且分散在不同品牌的数据库与数据仓库中,不仅数量庞大而且支离破碎。西尔斯公司需要八周时间才能制定出个性化的销售方案,但往往做出来的时候,它已不再是最佳方案了。
西尔斯集团开始使用群集收集来自不同品牌的数据,并在群集上直接分析数据,而不是像以前那样先存入数据仓库。为了避免浪费时间,西尔斯集团先把来自各处的数据分析之后再做合并,这种调整让公司的推销方案更快、更精准。
当大数据应用于供应链管理的时候,它让我们了解为什么一家汽车制造商的产品故障率突然飙升;它可以持续详细调查和处理几百万人的医保状况;它还可以基于产品特性的数据集,为在线销售做出更好的预测和规划。大数据在其他行业的应用也同样成效显著,无论金融业、旅游、政府部门还是机械维修,在市场推广、人力资源管理方面也都有极大的功用。
当然,基于大数据战略的管理也有很多挑战。调整领导力、人才、技术、决策、文化才能应对大数据战略转型。
企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。不是所有的赢家都会将大数据用于其决策制定,但数据告诉我们,这样确实胜算最大。
那大数据战略如何具体落地呢?
大数据如何落地呢?同时,经常听到很多大数据的概念和趋势,但是落地而务实的介绍相对较少。笔者根据大数据分析领域的实际从业经验,总结出大数据战略落地方法。下面讲逐层介绍。
第一是数据基础平台层(Hadoop优化,集群优化和安全管理优化),金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。
第二是数据抽取集成层,数据抽取包括结构化数据抽取和非结构化数据抽取,WEB数据抽取。
第三是NO SQL数据存储层,这里包含高频内存数据库、图形数据库、文件数据库、键值数据库等的建设管理。
最四是分析可视化平台层,这包含大数据可视化、大数据分析平台和海量数据查询的建设。
在进行大数据战略建设时,先分析本公司大数据现状、差距和需求,依据企业的信息化实际情况,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据建设的灵魂和核心,它将成为整个组织大数据发展的指引。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10