大数据分析项目需要慎重而有力的监管
分析团队的管理者们必须拿捏好指导数据科学家们完成工作,和给予他们能够有效完成工作所需要的空间之间的分寸。
Scotiabank,是一家总部位于多伦多的金融服务企业,企业内的数据科学家们不附属于任何特定的业务部门。相反,他们是一个独立的团队的一部分——正式的名称为决策科学团队——为银行内的所有部门提供高级分析。 但独立并不意味着脱离: Andrew Storey,银行的决策科学部门的副总裁, 他和其他管理者们都努力确保团队进行的数据分析项目,对于业务战略和运作是有实用价值的,而不是单纯的抽象练习。
在拉斯维加斯举行的2015 TDWI Executive Summit会议上,Storey说道,“仅仅因为我们能做某事并不意味着我们就必须这样做。” “我们真正需要做的是将自己扎根于业务中,支持他们正在进行的项目。在这样的一个团队内,你很容易脱离现实,所以我们必须保持务实。”
为了帮助优化市场活动,促销方案,产品定价,以及识别不同客户之间的财务关联,Storey希望他团队内的30位分析师在进行客户数据集和定价数据的预测分析,运行数据挖掘应用程序时,能够有创造性。事实上,促进创新文化是他管理一个成功的分析团队的核心原则。“我们应该努力寻找更好的做事方式,”他补充道,激励他的员工这样做也帮助他留住这些员工。
与此同时,Storey让Scotiabank的业务经理决定他的团队应该探索的领域,或者他与他们共同决定。分析结果需要嵌入到操作系统和流程中,预测模型“是完全无用的,如果我们不基于它而做出决定的话,”他说。
数据分析的解读
团队成员还必须能够向业务高管们解释他们所使用的分析技术和方法, 以获得他们对于结果的认同并使用这一结果。为了设法简化分析过程,Storey引导数据科学家摆脱重复建立预测模型。他鼓励他的团队使用其他行业的金融服务企业和公司的算法,只需调整使其适应银行的需求。
随着大数据分析项目不断扩大数据科学家的工作范围,以及他们分析的各类信息。类似Scotiabank这样的协调方法,在管理分析团队时,是很常见的,并且也变得越来重要,也更具挑战性。
调查结果显示,随着大数据分析项目变得更加普遍,管理分析团队也成为一个更大的挑战。例如, TechTarget的2015年度 IT优先项目的调查结果显示,全世界范围内2212名受访者中的25%,认为他们的企业正计划在今年开展大数据分析项目,位列计划软件项目前5位(参见图表)。与此同时,2014年6月接受咨询公司Gartner inc .调查的302名业务和IT专业人士中的40%则表示,他们的企业已经对大数据技术进行了投资,相较去年提高了30%;另外有33%的受访者计划在未来的24个月之内进行投资。
Mike Lampa,咨询公司Archipelago Information Strategies的总经理,认为协作和合议的方法在管理大数据分析工作时,是必须的。 “我认为正确的心态是你如何指导整个过程,而不是控制它。” Lampa警告说,如果优秀的数据科学家认为他们的工作被过度控制,很有可能对此感到反感,转而在其它地方寻找新的工作。他认为管理者应与他们的团队合作,将分析工作的重点放在有价值的项目上,在使用数据和审查分析模型时提供明确的指导方针,然后就放手。
分析师掌握主动权
Netflix公司就对自己的数据科学团队采取了此类管理方法。这家位于加州The Los Gatos的公司使用运行在Amazon Web服务云上的多种系统——包括Hadoop,Teradata公司的数据仓库,亚马逊的Redshift,和Simple Storage Service技术,存储多个PB 数据用于分析客户与其在线流媒体服务之间的互动。
Kurt Brown,Netflix公司数据平台的副总裁,在加州San Jose举行的Strata + Hadoop World 2015 conference上进行演讲,他认为,数据分析师们应该负责建立自己的查询,算法,和模型,他的目标是使他们能够在数据分析项目时做他们想做的,障碍越少越好。
Brown的平台经理与分析师互相协商,促进开发最佳方法,但他们对于开发工作不会设置障碍。有时会导致编码错误和数据问题,但是他认为,在Netflix这样的公司内,试图在分析系统中避免错误代码是“徒劳的”。事后,他的一位员工会查找需要清理的代码,然后将这个信息发送给对此错误负责的分析师,这样他们可以自行修复。 “这不应该是管理者的责任,” Brown说。“这必须是一个共同的责任”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20