网站数据分析 多渠道归因模型
在GoogleAnalytics中跟踪一个设备是没有问题,而且很完善,但是在多个设备间切换就不行了,因为设备中都有浏览器,网站分析工具会将cookie放到不同设备的浏览器中,所以cookie就没有办法传递。带着这个问题,看到了Avinash的一篇关于多渠道归因模型的文章,才知道原来多渠道归因有三种模型,以前只知道其中一种,就是跨渠道,例如跨广告,自然搜索,电子邮件,推荐流量等的这种模型,对文章进行了简单的翻译,希望对网站分析同行有帮助,内容如下:
多渠道归因问题的三种类型:
关于多渠道归因,会有很多的迷惑和不解,在我们的世界里有三种类型的归因问题。
一、多渠道归因,线上到实体店(MCA-O2S):
营销和分析人员尝试去弄懂网络营销和广告的对线下的影响(收入/品牌价值/电话等)。我们把这个归因称为MCA-O2S。
我这里使用的实体店,它包括以下几种情况:零售商店或公司的呼叫中心的销售(订单或目录请求),人们通过在线活动然后去献血,或者任何因为线上渠道带来的线下收入。
MCA-O2S的一个例子是Verizon想知道多少线下和线上电话激活是因为在线搜索广告带来的。
这是我用便利贴画的模型图:MCA-O2S,红色圆点代表我们要衡量的活动节点,这些点可以确保我们理解用户行为,并且得到影响我们市场和广告的行动见解…
我经常与首席执行官和首席营销官们讨论,当谈论到多渠道归因的时候,他们总是会说到MCA-O2S。然而,当我的数据分析同行谈论这个话题时,他们却不谈论MCA-O2S,你可以想像,为什么事情会变得混乱,因为两者之间缺少沟通。
所以,当你遇到一个CEO时,他可能会说:“请帮我解决这个多渠道归因问题”,你会说:“你对哪种MCA模型比较感兴趣?”如果情况是这样的话,就不同了,对问题的进一步明确将有助于促进一个有价值的谈话。
二、多渠道归因,跨多个屏幕(MCA-AMS):
高级领导人,特别是大公司的,当他们说多渠道归因的时候,已经开始提到跨屏幕。
随着移动手机和平板电脑的大量应用,我们都将变成拥有“四个屏幕”的人(电视,台式机,平板电脑,智能手机)。对于这种复杂的景象,许多高级领导人急于想看懂这种复杂的,混乱的景象,急于理清多渠道归因的头绪。他们指的其实就是MCA-AMS。
他们真正想要了解清楚的,是用户在使用多个设备体验互联网网站时,通过什么样的媒体(广告及市场推广)和发生了怎样的结果和转换。
MCA-AMS的一个例子是,假设我在看电视广告的时候,看到了一则广告,然后在我的平板电脑上进行搜索,点击了付费广告后到达了一个相机网站,后来阅读了NexusS相机的评论,我回到家后,使用我的笔记本在索尼网站上下了一个订单。
在这种情况下要将销售归功给谁呢?电视,平板电脑付费搜索广告,智能手机上的评论,PC上的下单。有点晕,对吧?
以下的这张图是关于MCA-AMS的,这个用户体验有点复杂,红色圆点代表的是我们接下来要弄明白的…
我们面临的挑战主要是,当访客与我们的网站互动的时候,不停地切换设备,去追踪他们变得越来越困难。其实,我不应该说越来越困难,我应该说,几乎是不可能的(cookies,通用特定标识符,隐私,政府等原因)。
也许唯一的例外,就是用户使用四种设备时都进行了登录,亚马逊和纽约时报都需要用户进行登录。这类公司通常拥有自己的数据仓库,这些数据仓库容量非常大,这样他们就有能力定期做数据挖掘,并确定用户相关的消费习惯和购买模式。通常,但并不总是,他们还可以梳理出不同设备的收入情况(使用GoogleAnalytics高级细分功能的话,5秒钟就可以)和客户分析的渠道推广计划。
即使这样,它还是很难。对很多人来说这仍然是一个复杂的情况,因为建立数据仓库需要大量的投入,我只能说很抱歉。
我相信真正的解决方案将来自cookies的进步,隐私政策的更新,政府的决策和不断变化的用户使用习惯。然后才是我们对数据处理能力。
通过以上的解释,你可以明白为什么归因模型好像跟MCA-AMS没有什么关系。但是,当你遇到管理人员时,他们可能会说:“请及时解决多渠道的归因问题”,相信这时候大多数人会问更进一步的问题:“你指的是MCA-O2S还是MCA-AMS?”
MCA-AMS很复杂,是一个很大的挑战。对于大多数人来说,还不是一个迫切的问题,但很多人以后都会碰到。
三、多通道归因,跨渠道(MCA-ADC):
觉大多数,在网络营销的圈子里谈到的多通道归因(不是首席执行官和首席营销官),指的都是以下的这个模型。
MCA-ADC是理解数字营销渠道(社交媒体,展示广告,YouTube,推荐来源,电子邮件,搜索等等)的模型,归因于一个特定的转换或者多个转换。
目前所有的网站分析工具,例如AdobeSiteCatalyst,WebTrends,GoogleAnalytics,Coremetrics等,会将转换归属到转换前的最后一次接触的渠道,也就是为人们所熟知的【归因到最后点击】。
有了MCA-ADC,你会试图跳出最后一次点击的思维,而是会考虑转换前的所有渠道(请看以下GoogleAnalytics的例子):
对于这个网站,767次的转换来自同一种路径类型:首先起始于社交媒体网站(例如Facebook,Twitter),然后直接访问网站,然后通过自然搜索到达网站,然后通过推荐网站再次进入,最后产生订单的是直接流量的点击。
数字营销的人员都迫切地想要了解以上转换中,权重是如何计算和分配的。直接流量应该获得50%吗?社交媒体呢?100%?自然搜索呢?2%?但是当我们明白了一个很关键的,隐藏的,细微的差别后,得把我们把刚才的想法先放一放。
当人们谈论MCA–ADC时,他们只是在讨论使用一台设备时的情况。因为网站分析工具去分析一个人使用不同屏幕(AcrossMultipeScreens–AMS)的情况是不太可能的。
所以你上面看到的转换,网站分析工具都可以将网站内容和一个浏览器的多个访问联系起来(请注意,是浏览器而不是人)顺便说一句,GA真是太棒了,因为其它大部分工具都没有能力可以告诉你。
假设以上的自然搜索在手机中产生……不管使用了什么网站分析工具,对于大多数网站来说,访问基本上是丢失的,因为cookie记录在手机的浏览器上,而一部分cookie则记录在电脑的浏览器上,ohmygod.
在cookies,ids,隐私政策,政府指导和用户使用习惯问题没有得到充分解决之前,区分MCA-AMS(acrossmultiplescreens,跨多个屏幕)和MCA-ADC(acrossdigitalchannels,跨多个渠道)是很重要的。
当衡量MCA-AMS的时候,你可以使用上一节中提到的指导。对于MCA-ADC,你会使用一组不同的报告,分别是多渠道路径和归因模型。
我敢肯定,当涉及到MCA–ADC的时候,你已经弄懂了第二个差别。
以上的情形没有追踪和考虑到线下用户行为的影响(O2S),网站分析工具在这方面不是很行,甚至可以说很差。
所以额外的3,835人在商店中或者通过手机渠道(采用上面Verizon的数字)购买是可能的。上述的所有渠道,不管是社交媒体,直接流量,搜索流量,还是推荐流量,都不会获得“权重”。除非你愿意使用在MCA-O2S中所描述的方法。
当你在说MCA–ADC的时候,确保你自己清楚,并且和领导沟通清楚,不是在说MCA-O2S(OnlinetoStore),同时也不是在讨论MCA-AMS。
以下是最后的一张便利贴,红色远点是当你在尝试MCA–ADC时最可能测量的节点:
如果我想卖弄学问的话,我会说这是MCA-ADCFOD模型(Multi-channelattributionacrossdigitalchannelsforonedevice),意思就是一台设备跨渠道的多渠道归因模型。
现在有丰富的分析经验,时间,耐心和上帝的祝福,可以做完整的多渠道归因分析了,多渠道包括多个线上广告渠道,跨设备的用户行为,线上和线下的影响。可惜的是,整体上而言非常难。我说的非常难,基本上就是不可能的意思。当我说几乎是不可能的,我指的是当你知道如何解决广告,线上和线下内容,客户之后的尝试。
我知道这听起来像无稽之言,但是这种讨论的确需要回归现实。有太多的虚假承诺,来自供应商,咨询顾问,微博爱好者,领袖和各路神仙,这对于整个网络营销生态系统是没有帮助的。
MCA-ADC的简单总结:
下一次当你听到有人提到多渠道归因的时候,你应该用你最温和的语气说:“您指的是MCA-O2S,MCA-AMS还是MCA-ADC?”
你会赢得其他人的尊重,因为你知道有三种类型,并且你可以理解他们所说的情形,然后进行进一步的讨论,相信这些讨论对职业生涯甚至商业嗅觉都会有一些提升。
多通道归因模型
对于MCA-O2S和MCA-AMS,它是一项复杂的工作,需要确定“哪种广告/营销手段能获得更多权重。”它需要耐心和技巧,它也需要你对16个策略的执行能力,这些策略包括线上和线下对各自的影响。甚至,它需要一种能力(人+技能+欲望)去进行实验。
所以这个问题:“谁获得多少权重”的优先级会降低。
有了MCA-ADC,任务会容易得多,我们有多渠道路径报告。此外,我们能够在一些工具中对MCA-ADC部分提到的行为(以上两张图片)运用归因模型。
最简单的网站分析工具也会有最常见的归因模型:最后点击,第一次点击,甚至分配。
如果你足够幸运,你能够使用更复杂和高级的工具,将会包括:基于数学算法的,能够调整的时间衰减模型。
如果你更幸运,你将有可能获得一个数字分析工具,它允许你创建一个定制的归因模型。
这些模型应用于MCA–ADC,并为您提供更好的关于数字媒体花费的建议。
这些模型都有自己的优点和缺点,如果你有我的书的WebAnalytics(分析)2.0,请翻到到358页,有些有更多的缺点,几乎没有任何优点,记得一定要规避它们。
其中一些通过了基础的测试,因此相对于停留在【归因到最后点击】的思维,会把你提升到一个更高的层次上。
但是弄懂这些模型的一个最大的好处就是,可以给你关于如何调整媒体花费的直接指导。(将美元、欧元、比索从付费搜索转移到展示广告,或者从展示广告到电子邮件,或者其他组合)
成功是通过策略的不断调整,不断测量变化,逐步改善才能达到的(几个礼拜,如果你公司比较小的话甚至几周)
如果你恰巧在一家大公司,假设你在网络营销的花费在10万美元以上,你很快就会发现你在多渠道归因中所犯的错误会较少,并且你的问题会集中在“我如何权衡我的网络营销组合”,而不是“谁得到更多的权重”。
这将推动你继续研究解决方案,这个解决方案需要独特的个人能力和不死的欲望去测量不能想象的模型。
当你达到这种阶段的时候,你将拥有声誉,财富和幸福。
多渠道归因:总结
这是一个严峻的挑战,因为现实是复杂的。
客户体验是以往任何时候都更加复杂,影响的渠道很多,内容消费很分散,三步走模型(吸引,获取,保留)现在分解成很多不同的部分。
所以,你没有选择。如果想让您的公司有一个有效的广告和营销策略,你必须处理多渠道归因的三个问题。
以下是一些好消息:你不需要一气呵成。事实上,如果你试图这样做,可能会损害你的健康(虽是玩笑,但事实的确是这样)。你应该采取渐进的步骤,步步为营。
以下是一些建议:
1.首先得明确,你在解决管理团队的什么问题。O2S,AMS,还是ADC。
2.使用适当的解决方案。
3.真的要把多渠道路径报告弄懂,他们都是免费的,他们很棒。使用概述报告中的维恩图,并将真实的情况展示给你的管理团队。他们会欣赏你的杰作,并且停止浪费金钱。
4.开始使用简单的模型进行试验。您会从最后点击的归因思维中跳出来,并且放弃。花一些精力在时间衰减归因模型上(理想的情况是运用几种数学模型)。
5.做实验,并且感受不同组合的变化
6.追踪结果,分析数据,改变变量后再进行尝试。
7.一旦掌握后,慢慢转移到媒体组合的实验。
如果在任何一步,你注意到利润率的递减,回到前面的步骤,进行优化,直到值得公司投入更多的钱在下一个步骤中。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26