大数据时代,如何评价人才
问:目前,人才评价工作中存在的突出问题是什么?
答:人才评价工作非常重要,是人才发现、引进、培养、选拔、使用、激励的依据。传统上,对人才的评价是经验性评价,是对已有成果、已有资历作出的判断。
问题是,当今世界充满了不确定性、风险性和不可预测性。过多关注过去的人才评价模式有很多局限性,尤其不适合创新型人才引进评价,而且特别不适合海外年轻拔尖人才引进评价。因为,创新型人才是发展中的人才,需要的是面向未来的评价,是“加油站”式的评价,评价要能为他们的未来发展加油鼓劲。
问:大数据将给我们的人才评价工作带来怎样的改变?
答:人才评价的一个极为重要的作用是发现和甄别人才,基于此的人才评价要为人才使用和发展服务,要特别重视未来,而不是过去。而大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升人才评价的整体水平,解决人才评价面向未来的问题。
问:历史优秀的人才,不是更有可能取得更大成就吗?
答:这可不一定。很多人评上教授后,可能一生都一事无成,人不是一定会越变越聪明的。社会进步需要更加有潜能、更加能创新的人,而这些人绝对不是单凭学历、职称就能看出来的。
精确度提高
问:人们常说要慧眼识英才,大数据能替代伯乐的直觉吗?
答:正是因为掌握数据的不充分,才逼得我们不得不依靠直觉。历史发展到今天,人才更为丰富多样,伯乐的直觉已不能满足现实需要。丁肇中先生就说过,同行评不出来创新人才,因为他们都是用已有的知识来评价人才,而创新人才是要面向未来的,不是一个模子刻出来的。只有大数据才能解决这个问题。
考察一个人,要有足够的数据情报,这就是美国中情局的强项——对关键人物数据掌握得非常细致。他们会不择手段,挖掘全部数据。你从哪个医院出生,父母怎么样,几岁还在尿床,小学犯过什么错误,中学有什么劣迹,大学时谈了几次恋爱,做过什么股票,亲戚有没有贩毒……都在掌握之中。他们能从一个人高中时经常上树判断出他“个性叛逆”。这些正是我们在人才评价中欠缺的。
问:是不是可以这样理解,大数据带来的不仅是信息技术领域的革命,它正在改变着我们理解世界的方式?
答:是的。迎接大数据时代,需要形成“大数据思维”。大数据不仅是一种实用工具,而且是一种思维方法。美国的卫生防疫部门积累了多少年,人才、专业上都有绝对的优势,为什么干不过谷歌?因为谷歌不和你拼专业,它拼的是信息采集量和掌握量。
大数据时代,分析事物之间的联系,不再限于线性联系,而是特别重视事物的相关性。现在美国卫生防疫部门也在做出改变,效果明显。比如,他们会监控全纽约200多万人上班刷卡的数据,刷卡情况会直接汇总到应急中心,如果有一天10%的人没刷卡,他们就开始启动疫情分析工作。
问:我们从中能借鉴什么呢?
答:对人才信息的采集、利用要给予更多关注。我们现在的问题是,搜集一个“坏人”(罪犯或贪官)信息所下的功夫,远比搜集一个“好人”信息要多得多。如果我们肯像搜集“坏人”信息一样去搜集“人才”信息,人才评价问题就解决了。
全球化视野
问:大数据运用到人才评价,应从何处入手?
答:如何最快捷地让社会接受新的理念?要从技术上入手解决。比如,“花未来的钱”的观念,中国通过推广信用卡做到了。信用卡,不光是方便,更大功能在于刺激消费。我们这个世代崇尚存钱的国家,接受消费文化这么快,就是因为先从技术上入手了。
大数据时代的人才可以出现在世界任何一个角落,他可以为世界上任何一个公司效力,人才国际化将全方位开启,人才战争将比以往更为激烈。谁能尽早把大数据体系建立起来,谁就能在新一轮人才战争中占据主动地位。全国性大数据平台的建立,还将直接减少研发成本,少走弯路,缩短研发周期,促进科研人员迅速取得一些创新成果。
此外,针对违法犯罪分子,我们普遍采用了测谎仪,如果科研人员愿意用同样的技术下功夫,制造出一个潜能仪,恐怕什么样的人才都能评得准。
问:这么说,对数据量的占有将非常关键?
答:对。国际猎头能准确找到人才,就是因为占有了海量数据。我们没有大数据,就只能在不充分的情况下进行人才评价。大数据能够帮助人们解决这个问题,从理论上讲,凡是符合条件的人都可以进入评价视野,这就解决了“少数人从少数人中选人”的弊端和评价标准粗放简单的问题。
问:大数据思维和手段,对创新人才的发现与评价会有帮助吗?
答:大数据的相关性视角,将为发现和评价创新人才打开一个新的天地。创新成果的产生,大多数还是和兴趣有关系,不是跟他的任务有关系,和项目的关联性不如与兴趣的关联性。人类历史上,最具原创性的科学发现,都源于一些偶然性的因素,钨丝的发现、青霉素的发现、火药的发现……很多都是来自原定计划的失败,甚至是事故。
20世纪70年代,澳大利亚两个学者,认为在高酸度胃液下生活的幽门螺旋杆菌是导致胃病的原因。论文发表时,遭到同行嘲笑,大家认为高酸环境下细菌是生存不了的。后来,基于他们的研究,药厂开发出相关药物,他们才获得认可并获得诺贝尔生理学或医学奖。我相信,在大数据时代,这样的创新人才将迎来前所未有的光明未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02