大数据时代,如何评价人才
问:目前,人才评价工作中存在的突出问题是什么?
答:人才评价工作非常重要,是人才发现、引进、培养、选拔、使用、激励的依据。传统上,对人才的评价是经验性评价,是对已有成果、已有资历作出的判断。
问题是,当今世界充满了不确定性、风险性和不可预测性。过多关注过去的人才评价模式有很多局限性,尤其不适合创新型人才引进评价,而且特别不适合海外年轻拔尖人才引进评价。因为,创新型人才是发展中的人才,需要的是面向未来的评价,是“加油站”式的评价,评价要能为他们的未来发展加油鼓劲。
问:大数据将给我们的人才评价工作带来怎样的改变?
答:人才评价的一个极为重要的作用是发现和甄别人才,基于此的人才评价要为人才使用和发展服务,要特别重视未来,而不是过去。而大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升人才评价的整体水平,解决人才评价面向未来的问题。
问:历史优秀的人才,不是更有可能取得更大成就吗?
答:这可不一定。很多人评上教授后,可能一生都一事无成,人不是一定会越变越聪明的。社会进步需要更加有潜能、更加能创新的人,而这些人绝对不是单凭学历、职称就能看出来的。
精确度提高
问:人们常说要慧眼识英才,大数据能替代伯乐的直觉吗?
答:正是因为掌握数据的不充分,才逼得我们不得不依靠直觉。历史发展到今天,人才更为丰富多样,伯乐的直觉已不能满足现实需要。丁肇中先生就说过,同行评不出来创新人才,因为他们都是用已有的知识来评价人才,而创新人才是要面向未来的,不是一个模子刻出来的。只有大数据才能解决这个问题。
考察一个人,要有足够的数据情报,这就是美国中情局的强项——对关键人物数据掌握得非常细致。他们会不择手段,挖掘全部数据。你从哪个医院出生,父母怎么样,几岁还在尿床,小学犯过什么错误,中学有什么劣迹,大学时谈了几次恋爱,做过什么股票,亲戚有没有贩毒……都在掌握之中。他们能从一个人高中时经常上树判断出他“个性叛逆”。这些正是我们在人才评价中欠缺的。
问:是不是可以这样理解,大数据带来的不仅是信息技术领域的革命,它正在改变着我们理解世界的方式?
答:是的。迎接大数据时代,需要形成“大数据思维”。大数据不仅是一种实用工具,而且是一种思维方法。美国的卫生防疫部门积累了多少年,人才、专业上都有绝对的优势,为什么干不过谷歌?因为谷歌不和你拼专业,它拼的是信息采集量和掌握量。
大数据时代,分析事物之间的联系,不再限于线性联系,而是特别重视事物的相关性。现在美国卫生防疫部门也在做出改变,效果明显。比如,他们会监控全纽约200多万人上班刷卡的数据,刷卡情况会直接汇总到应急中心,如果有一天10%的人没刷卡,他们就开始启动疫情分析工作。
问:我们从中能借鉴什么呢?
答:对人才信息的采集、利用要给予更多关注。我们现在的问题是,搜集一个“坏人”(罪犯或贪官)信息所下的功夫,远比搜集一个“好人”信息要多得多。如果我们肯像搜集“坏人”信息一样去搜集“人才”信息,人才评价问题就解决了。
全球化视野
问:大数据运用到人才评价,应从何处入手?
答:如何最快捷地让社会接受新的理念?要从技术上入手解决。比如,“花未来的钱”的观念,中国通过推广信用卡做到了。信用卡,不光是方便,更大功能在于刺激消费。我们这个世代崇尚存钱的国家,接受消费文化这么快,就是因为先从技术上入手了。
大数据时代的人才可以出现在世界任何一个角落,他可以为世界上任何一个公司效力,人才国际化将全方位开启,人才战争将比以往更为激烈。谁能尽早把大数据体系建立起来,谁就能在新一轮人才战争中占据主动地位。全国性大数据平台的建立,还将直接减少研发成本,少走弯路,缩短研发周期,促进科研人员迅速取得一些创新成果。
此外,针对违法犯罪分子,我们普遍采用了测谎仪,如果科研人员愿意用同样的技术下功夫,制造出一个潜能仪,恐怕什么样的人才都能评得准。
问:这么说,对数据量的占有将非常关键?
答:对。国际猎头能准确找到人才,就是因为占有了海量数据。我们没有大数据,就只能在不充分的情况下进行人才评价。大数据能够帮助人们解决这个问题,从理论上讲,凡是符合条件的人都可以进入评价视野,这就解决了“少数人从少数人中选人”的弊端和评价标准粗放简单的问题。
问:大数据思维和手段,对创新人才的发现与评价会有帮助吗?
答:大数据的相关性视角,将为发现和评价创新人才打开一个新的天地。创新成果的产生,大多数还是和兴趣有关系,不是跟他的任务有关系,和项目的关联性不如与兴趣的关联性。人类历史上,最具原创性的科学发现,都源于一些偶然性的因素,钨丝的发现、青霉素的发现、火药的发现……很多都是来自原定计划的失败,甚至是事故。
20世纪70年代,澳大利亚两个学者,认为在高酸度胃液下生活的幽门螺旋杆菌是导致胃病的原因。论文发表时,遭到同行嘲笑,大家认为高酸环境下细菌是生存不了的。后来,基于他们的研究,药厂开发出相关药物,他们才获得认可并获得诺贝尔生理学或医学奖。我相信,在大数据时代,这样的创新人才将迎来前所未有的光明未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31