文 | Cashcow
本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的深度学习工具。
无疑,来自Google军火库的TensorFlow必然是开源深度学习软件中的明星产品,登陆GitHub当天就成为最受关注的项目,当周获得评星数就轻松超过1万个。
对于希望在应用中整合深度学习功能的开发者来说,GitHub上其实还有很多不错的开源项目值得关注,首先我们推荐目前规模人气最高的TOP3:
一、Caffe。源自加州伯克利分校的Caffe被广泛应用,包括Pinterest这样的web大户。与TensorFlow一样,Caffe也是由C++开发,Caffe也是Google今年早些时候发布的DeepDream项目(可以识别喵星人的人工智能神经网络)的基础。
二、Theano。2008年诞生于蒙特利尔理工学院,Theano派生出了大量深度学习Python软件包,最著名的包括Blocks和Keras。
三、Torch。Torch诞生已经有十年之久,但是真正起势得益于去年Facebook开源了大量Torch的深度学习模块和扩展。Torch另外一个特殊之处是采用了不怎么流行的编程语言Lua(该语言曾被用来开发视频游戏)。
除了以上三个比较成熟知名的项目,还有很多有特色的深度学习开源框架也值得关注:
四、Brainstorm。来自瑞士人工智能实验室IDSIA的一个非常发展前景很不错的深度学习软件包,Brainstorm能够处理上百层的超级深度神经网络——所谓的公路网络Highway Networks。
五、Chainer。来自一个日本的深度学习创业公司Preferred Networks,今年6月发布的一个Python框架。Chainer的设计基于define by run原则,也就是说,该网络在运行中动态定义,而不是在启动时定义,这里有Chainer的详细文档。
六、Deeplearning4j。顾名思义,Deeplearning4j是”for Java”的深度学习框架,也是首个商用级别的深度学习开源库。Deeplearning4j由创业公司Skymind于2014年6月发布,使用Deeplearning4j的不乏埃森哲、雪弗兰、博斯咨询和IBM等明星企业。
DeepLearning4j是一个面向生产环境和商业应用的高成熟度深度学习开源库,可与Hadoop和Spark集成,即插即用,方便开发者在APP中快速集成深度学习功能,可应用于以下深度学习领域:
l 人脸/图像识别
l 语音搜索
l 语音转文字(Speech to text)
l 垃圾信息过滤(异常侦测)
l 电商欺诈侦测
七、Marvin。是普林斯顿大学视觉工作组新推出的C++框架。该团队还提供了一个文件用于将Caffe模型转化成语Marvin兼容的模式。
八、ConvNetJS。这是斯坦福大学博士生Andrej Karpathy开发浏览器插件,基于万能的JavaScript可以在你的游览器中训练神经网络。Karpathy还写了一个ConvNetJS的入门教程,以及一个简洁的浏览器演示项目。
九、MXNet。出自CXXNet、Minerva、Purine等项目的开发者之手,主要用C++编写。MXNet强调提高内存使用的效率,甚至能在智能手机上运行诸如图像识别等任务。
十、Neon。由创业公司Nervana Systems于今年五月开源,在某些基准测试中,由Python和Sass开发的Neon的测试成绩甚至要优于Caffeine、Torch和谷歌的TensorFlow。
来自IT 经理网
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21