大数据分析和建模工具领域的“超级英雄”
在过去的十年里,大数据的崛起让一大批供应商尝试利用大数据的优势研发新的数据分析工具。
在固有分析工具进行更新换代的同时,新兴分析工具则宣称它们才是 “潮流新品”,广大用户不清楚市面上有哪些分析工具。为机构资源寻找合适投资的分析工具就像盲人瞎马,是个高风险的赌博。
假设你是一个拥有大量信息的信息总监,并且需要解决一个业务问题。要从分析工具琳琅满目的分析市场中找出最适合公司的工具组合看似很难,其实不然。分析工具主要有两种:数据存储和建模工具。广义的数据存储是:存储数据以供未来使用的任意硬件和软件组合。它们也许各有特点,但通常拥有数据存储和检索的基本功能。建模工具由硬件和软件组成,对数据进行整合以得出规律。传统开发人员首先专注于数据存储,数据学家则利用建模工具进行数据分析和数据挖掘。要根据自身定位找出适合的工具就要从这两种分析工具中挑选出合适的组合。这两种分析工具可细分为七个不同的类别,每一类都有它独特的优势和强大功能。要解决你公司的问题,就要对这些工具进行正确分组。
分析工具有:
传统的关系数据库管理系统(RDBMS): 正如它的字面意思,它代表人们在过去 30 年里所指的数据库。尽管这些数据管理系统的数据处理量比不上一些新型技术,但在所有的分析工具中,它们拥有最完善的功能集,数据分析最透彻并且涉及的知识最规范。
超级英雄的首位英雄: 美国队长,当之无愧的领导分析工具,虽然相比起其它分析工具来略显过时,但 RDBMS 仍然拥有强大功能,并能出色完成任务。
适用情况: 需要解决的问题并不是最麻烦的,但你需要一些成熟可靠的分析工具,让员工能尽快上手。
非传统数据库(DB): 这组数据库包含众多非 SQL 语言(代表“不使用 SQL 语言”或”不仅使用 SQL 语言”)的新型分析工具。这些工具除了运用关系数据库的基础——关系模型外,还能用于保持中小型数据(即以兆字节或千兆字节计算)流畅加载,并且在使用得当的情况下,能加载以兆兆字节或帕特字节计算的数据。这类数据库通常是跨硬件的源代码开放软件工具;其供应商通过出售包含产品支持的企业特别版软件获利。
超级英雄代表人物 : 黑寡妇,她引用卓越的处理技术处理大型数据,是该方面的专家。同时,也能实现不同功能间的快速转换。
适用情况: 希望运用一个新型的框架扩大数据规模,想要引用一种专门处理某类数据问题的技术,同时想尝试引用新技术来博取大众眼球。
大规模并行处理(MPP)关系数据库: 如果把传统的 RDBMS 比作可靠的中型轿车,那么 MPP 关系数据库就是汽车界的布加迪威龙(Bugatti Veyrons):拥有最强劲的马力和极高的价格。这类数据库与传统的 RDBMS 组一样,都以关系模型为基础,却包含卓越的硬件和软件工程,性能和容量大幅提升。因为拥有该项技术,通常供应商只出售该数据库就能处理各类问题,因此其安装及维护费用可能十分昂贵。
超级英雄代表人物 : 钢铁侠,本来是普通的东西(普通人,RDBMS),注入大量的资金和技术,就成为英雄(身穿铁甲的家伙,MPP 关系数据库)。
适用情况: 与供应商关系良好,愿意付出一大笔资金,且不希望对数据存储的方式进行任何重大改变。
Hadoop 和 NoSQL:Hadoop 是市面上能买到的拥有最大数据存储容量的数据库。基于雅虎网站(Yahoo!)和谷歌网站(Google)的搜索结果,当需要处理最大容量的信息时,就要求助于 Hadoop。这方面的产品通常包含了与数据录入,数据管理和数据传输有关的应用程序的整个计算机系统。
超级英雄代表人物 : 绿巨人,虽然不能尽善尽美,但如果需要大容量、高性能,他是不二之选。
适用情况: 需要存储和处理各类所有数据。
建模工具:
成熟的建模工具: 这类建模工具旨在利用统计学和数据挖掘方法处理数据,从而得出分析洞见。最初的用户是科学家和统计学家,现在用户群已增至包含企业用户。这些工具可以处理小型数据集,但通常可以扩大使用范围,或用来控制更强大的新一代平台。
超级英雄代表人物:20 世纪 60 年代的蝙蝠侠——不可否认他有点落后于时代,但他拥有几乎每一项你所能想到的功用。
适用情况: 需要使用一种功能强大且为每一个员工所熟悉的技术。例如,你的团队有多名能快速利用 Pandas 数据包进行数据分析的 Python 开发人员,或者拥有一支完全掌握内外关键流程、经验丰富的 SAS 建模团队。
平台: 大数据平台是定义广泛的应用和基础设施类别,旨在提供非常特定的功能。由于以具成本效益的方式维护大数据环境非常困难,大数据平台大受欢迎。在本情况中,平台精简必要的数据操作,让用户专注于“企业任务”。这些解决方案通常包含数据集成、分析和可视化。
超级英雄代表人物:X 教授——他拥有超乎想象的强大功能,丰富的感应能力,但只限于在特定范围内。
适用情况: 需要解决的问题极为清晰,希望运用一种功能齐全的高超技术为特定问题提供最优解决方案。
新一代建模工具: 新一代的建模工具兴起于上一年代末,是专门为并行数据处理而开发的。虽然这类工具仍处于新兴阶段,但正努力开发能对大规模数据进行接近实时分析的技术(达到如分析小型数据一样简单的地步),致力于取代已经成熟的建模工具。
超级英雄代表人物:21 世纪的蝙蝠侠——同样是一种建模工具,但拥有更新、更强大的功能,甚至达到令人敬畏的技术高度。当然,由于他更现实,因此功能较为专一。
适用情况: 面对前所未见的任务,希望有最先进的技术协助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13