分析产品数据时需要注意哪些坑
之前在国外的论坛中有看到关于数据分析的细分,英文单词是segmentation,Segmentation的原意是分割。怎么理解呢?试想想,当大量的数据摆在面前是无非直接去分析的,能够做的就是细分。明白这一点之后,我们来从Why 和 How 上来简单说说。
无论是谈业务,讲解好的商业模式,还是做产品,会伴随一个简单的问题:这个商业模式、业务的客户群、产品是哪些?(如:远近闻名的Uber的主要用户是哪些?)好的回答会给你说,我的业务主要是分B2C、C2C;再好一点的答案会给你说:“根据我对市场的研究,我主要做B2C的市场,我的客户主要会集中在群体A以及群体B,我的商业模式会对不同的群体有不同的运作方式”。如:Uber的主要市场是在一线城市,主要细分市场集中在中高端出租车(出行服务),主要客户细分为服务提供方:私家车车主;服务受众:针对需要更便捷的出行服务人群。这些都是数据反映出来的结果,越多的数据,能够得到越多的信息。
从受众的角度来看,把市场一层一层剥开:市场> 市场细分> 用户细分> 用户
从运营角度来说,在数据分析之前,先要了解市场细分,而做的细致,则是对每一个顾客有定制化营销。而对于任何一家公司来说,如何将这个认知的过程做好,则是这个生意/商业模式的关键。而“细分”(segmentation)很好地从一个相对可控的维度,给予我们决策者/执行者足够的”认知“去进行商业决策。这里需要强调的是,公司是用“细分”还是客户定制化营销,并不是对立的关系,完全是根据公司发展的进度和客户的需求来的。举个例子,还是拿我最为熟悉的知乎说事儿,知乎现在从战略上来,用客户细分解决那些“大V”问题,类似这段时间的版权改版 - 针对大V/内容贡献者这个segment的加强;类似知乎日报升级 - 针对普通用户/非用户segment的改进。
谈数据分析,必然要从统计学的角度扯扯。
从统计学的角度来说,这是分类问题。而从分析的角度来说,涉及两个方面:
定量分析
定性分析
在迫不及待跳到用什么各类高端模型(比如AARRR模型,我真不是故意的,这个确实是个例子)之前,先来确定我们的数据分析的目标 其实说白了是对用户做判断:
现有用户 -- 现有用户是?喜欢啥?怎样的消费习惯?所有用户里面,哪些最值钱?etc...
潜在用户-- 潜在客户在哪?他们的喜好?我们要通过什么渠道获取?获取成本是多少?etc...
这类问题,嘴上说起来是简单的,但是实际上,建立这样的用户需要很系统的定量分析和定性分析,根据你对用户的了解而提供对应的服务即是一种:产品的思维。这也就是为啥我觉得很多大型公司都会对部门进行细分:数据分析部,产品研发部,市场部。对指定新产品从整个发展线上去定位,然后再去做运营。
对于现有用户和潜在用户的了解,有如下方式:
了解你的商业模式:是零售类的重复性销售还是会员制度,还是其他(类似金融产品的销售云云)。
了解你的商业目的:
当前产品的定位产品
产品这个发展模式的定位
仅仅根据数据(财报)体现出来的通过不同的精准营销手段来提高短期收益
提高用户活跃度
了解你的用户基本行为
关于用户基本行为一点,是现在大数据分析的最为直接的目的。而实现这个这个往往会通过很多小的项目(也就是经常提到的跨部门协作的体现)来不断完善。我了解到的是根据RFM分析(Recency,Frequency,Monetary)来分析,来了解你的用户都是些什么人,有什么消费习惯,他们对营销活动的反应如何,反馈率是多少。根据大量的数据统计的结果,来制定你的商业计划。利用数据模型,比如k-means cluster,等等去分类你的已有客户,看看他们基于某一个指标来分类,因为我的商业目标是为高利润的客户提高更好的服务,降低这个客户群的流失率,增加交叉销售的成功率(cross-sell rate)。
为啥要扯这些呢?因为很多数据分析的坑,都是这些具体的数据细分开始就错了。
比如,从市场这个起点开始就错了,没有搞清楚这个数据是否能够对这个市场能有好的分析性和预测性。这是一个链条,从一开始的错,会一直错到最后。而数据分析的逻辑是很严密的,如果你没有意识到你的起点就是错的,那么错误的分析会让你走入“只求短利益”而忘记产品持续发展的重要性,这也是为什么很多做手游的公司,一再投入分析数据,运营,但是产品的效果总是不好。
再者,用户的流失率表面上可能是运营不到位而在营销手段上输给竞争对手而导致的。如果做一个关于“产品的各个功能满意度的调查”,会发现,大量的用户流失是因为你的产品没有持续发展的产品设计,而不是营销上给用户“恩惠”少了而流失,虽然营销的失败也能够导致用户的流失,但是不会有大量的流失的现象出现。
我们做数据分析是为了改善产品,从而给用户更好的产品体验,本质是要对用户的进行进行深度分析,然后结合现有产品的特点,去改进,这才是数据能说话的要义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22