张溪梦:拿什么拯救你,疲于污水处理的数据分析师
大数据时代,数据成为企业决策最为重要的参考之一。尽管数据源的生成量正以几何倍数的速度增加,尽管各行各业都在标榜自己生产了多少有价值的数据,但究竟哪些数据可以为企业所用,如何基于高效的数据分析创造商业价值,仍是非常具有挑战性的话题。
对于以上问题,【WOT2015"互联网+"时代大数据技术峰会】特邀讲师、GrowingIO创始人张溪梦分别基于企业运营需求及技术发展角度进行了分析,下面就让我们一起学习,最新一代的数据分析技术将如何帮助企业最大限度发挥数据运营效率。
【WOT2015"互联网+"时代大数据技术峰会】特邀嘉宾 张溪梦
张溪梦,GrowingIO创始人、CEO,前LinkedIn分析部高级总监。美国Data Science Central评选其为"世界前十位前沿数据科学家",前LinkedIn美国商业分析部高级总监,亲手建立了LinkedIn将近90人商业数据分析和数据科学团队,支撑了LinkedIn公司所有与营收相关业务的高速增长。 2015年5月,创立新一代网站和移动端数据分析平台GrowingIO,创始团队来自LinkedIn 、eBay 、Coursera、亚信等国内外顶级互联网及数据公司,具有强大的商业分析、数据产品、企业软件研发以及机器学习等专业背景、先进的数据分析技术和丰富的实战经验。
数据分析创造商业价值
现在,几乎再没有人会质疑数据驱动对于企业运营和商业价值的重要性,工业4.0都将大数据的存储、剖析、安全保障和数据价值的呈现和利用,列为未来三大核心诉求之一。
为什么数据化运营如此重要?因为基于证据的决策更可靠。依照数据分析得到的结论,企业可以快速发现问题、判断趋势、有效行动,从而指导公司未来的发展方向。
张溪梦认为,企业中的每一位员工都应该参与到数据化运营的工作中来。数据可以直观的将一些原本无形的标准进行量化,从而帮助员工发现自己的工作与业务结果之间的联系,有针对性的开展工作。
可让这个想法落地并不简单,因为这不仅仅是收集收据、定期查看而已。培养专业人才、在更短的时间内处理更多的数据、保证处理数据的质量和性能、让合适的人员使用合适的工具……有太多太多困难都在拖慢企业数据化运营的进程。
企业数据分析流程的90%耗费于初级阶段
互联网技术的发展为企业加速创新提供前所未有的机遇。在快速变化的商业格局下,企业是否有迅速做出决策的能力,成为影响未来生存和发展的关键。
然而现实往往是残酷而无奈的。张溪梦告诉我们:“去年美国某研究机构做过一份关于企业数据分析流程的调查,结果显示,仅仅是在数据收集阶段,就要花费5个星期的时间”。
造成这种局面的关键因素之一,是目前的大数据分析需要专业技术人员同时具备编程和数据分析两种能力。张溪梦将数据分析的流程形象地比喻为将一条被污染的河水变清的过程。我们收集的大量数据就像流入源头的污水,需要人力进行各种监控,然后放入一个池子里进行沉淀。之后则要开展各种清洗、聚合、再清洗、再消毒,再传输等庞大、繁杂的工作,这个过程占用了数据工程和分析师几乎90%的时间。企业急需更加先进的技术和更具指导性的方法论,来提升数据化运营的效率。
“自动化”是下一代数据分析技术的核心
要想突破目前企业数据分析中的瓶颈,关键要对现有的业务的数据分析流程进行大规模的简化,将人类的智慧集中到最能够创造商业价值的环节中。
张梦溪认为,取代今天这种功能化的数据分析的下一代数据分析技术,一定是基于以自动化为核心的一套框架。这需要企业对沉淀多年的传统技术框架进行革新。过去,为了应对基础设施在计算、存储等能力上的缺陷,往往需要将来源不同、类型不同的数据制成多维度的各种表格,来达到减少存储量的目的,这会大大拖慢企业数据处理效率。
对于未来数据分析技术趋势,张溪梦主要提到以下两个方面:
流式处理框架:这是企业实现数据自动化的核心技术。流处理的优势是可以任意数据格式进行转换,实现近乎实时的数据处理能力。
数据分析云化:云计算技术为企业IT的基础设施带来革命性的力量。将数据分析做成云端的SaaS服务后,开发人员将不再需要维护大量系统和工作流。最重要的一点,我们大幅度的降低数据分析埋点才可以详细地收集用户数据的这个巨大的限制,只需要结合业务需求,进行简单的拖拽实现定制化的数据采集规则。
流处理和云两种技术的结合,会使数据像雨滴一样,慢慢聚集在云端的服务器里面开始积累,用户将不再需要做大量的IT的基础设施的工作,或者是做各种数据清洗、整合、线上、线下聚合。
张梦溪表示,“在未来分工化、协作化的格局下,企业应该将一些相对支持性的功能外包给真正的专家或者是产品,专注做好自己最擅长的事情,所以数据分析云端化这是一个必然的趋势。”
WOT峰会将分享如何用数据化运营创造商业价值
在11月28-29日由主办位于深圳的【“互联网+”时代大数据技术峰会】中,张溪梦将带来目前最先进的全自动化数据分析的相关技术和方法论,并与大家探讨何利用实时数据分析,帮助企业最大程度地创造商业价值。
采访最后,张溪梦描述了这样的愿景:“我希望现在的企业家们都能看到云端数据分析自动化的趋势,未来每一家企业和个人都可以做自己最擅长和关注的工作,一起来把这个世界构建的更美好。”
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21