张溪梦:拿什么拯救你,疲于污水处理的数据分析师
大数据时代,数据成为企业决策最为重要的参考之一。尽管数据源的生成量正以几何倍数的速度增加,尽管各行各业都在标榜自己生产了多少有价值的数据,但究竟哪些数据可以为企业所用,如何基于高效的数据分析创造商业价值,仍是非常具有挑战性的话题。
对于以上问题,【WOT2015"互联网+"时代大数据技术峰会】特邀讲师、GrowingIO创始人张溪梦分别基于企业运营需求及技术发展角度进行了分析,下面就让我们一起学习,最新一代的数据分析技术将如何帮助企业最大限度发挥数据运营效率。
【WOT2015"互联网+"时代大数据技术峰会】特邀嘉宾 张溪梦
张溪梦,GrowingIO创始人、CEO,前LinkedIn分析部高级总监。美国Data Science Central评选其为"世界前十位前沿数据科学家",前LinkedIn美国商业分析部高级总监,亲手建立了LinkedIn将近90人商业数据分析和数据科学团队,支撑了LinkedIn公司所有与营收相关业务的高速增长。 2015年5月,创立新一代网站和移动端数据分析平台GrowingIO,创始团队来自LinkedIn 、eBay 、Coursera、亚信等国内外顶级互联网及数据公司,具有强大的商业分析、数据产品、企业软件研发以及机器学习等专业背景、先进的数据分析技术和丰富的实战经验。
数据分析创造商业价值
现在,几乎再没有人会质疑数据驱动对于企业运营和商业价值的重要性,工业4.0都将大数据的存储、剖析、安全保障和数据价值的呈现和利用,列为未来三大核心诉求之一。
为什么数据化运营如此重要?因为基于证据的决策更可靠。依照数据分析得到的结论,企业可以快速发现问题、判断趋势、有效行动,从而指导公司未来的发展方向。
张溪梦认为,企业中的每一位员工都应该参与到数据化运营的工作中来。数据可以直观的将一些原本无形的标准进行量化,从而帮助员工发现自己的工作与业务结果之间的联系,有针对性的开展工作。
可让这个想法落地并不简单,因为这不仅仅是收集收据、定期查看而已。培养专业人才、在更短的时间内处理更多的数据、保证处理数据的质量和性能、让合适的人员使用合适的工具……有太多太多困难都在拖慢企业数据化运营的进程。
企业数据分析流程的90%耗费于初级阶段
互联网技术的发展为企业加速创新提供前所未有的机遇。在快速变化的商业格局下,企业是否有迅速做出决策的能力,成为影响未来生存和发展的关键。
然而现实往往是残酷而无奈的。张溪梦告诉我们:“去年美国某研究机构做过一份关于企业数据分析流程的调查,结果显示,仅仅是在数据收集阶段,就要花费5个星期的时间”。
造成这种局面的关键因素之一,是目前的大数据分析需要专业技术人员同时具备编程和数据分析两种能力。张溪梦将数据分析的流程形象地比喻为将一条被污染的河水变清的过程。我们收集的大量数据就像流入源头的污水,需要人力进行各种监控,然后放入一个池子里进行沉淀。之后则要开展各种清洗、聚合、再清洗、再消毒,再传输等庞大、繁杂的工作,这个过程占用了数据工程和分析师几乎90%的时间。企业急需更加先进的技术和更具指导性的方法论,来提升数据化运营的效率。
“自动化”是下一代数据分析技术的核心
要想突破目前企业数据分析中的瓶颈,关键要对现有的业务的数据分析流程进行大规模的简化,将人类的智慧集中到最能够创造商业价值的环节中。
张梦溪认为,取代今天这种功能化的数据分析的下一代数据分析技术,一定是基于以自动化为核心的一套框架。这需要企业对沉淀多年的传统技术框架进行革新。过去,为了应对基础设施在计算、存储等能力上的缺陷,往往需要将来源不同、类型不同的数据制成多维度的各种表格,来达到减少存储量的目的,这会大大拖慢企业数据处理效率。
对于未来数据分析技术趋势,张溪梦主要提到以下两个方面:
流式处理框架:这是企业实现数据自动化的核心技术。流处理的优势是可以任意数据格式进行转换,实现近乎实时的数据处理能力。
数据分析云化:云计算技术为企业IT的基础设施带来革命性的力量。将数据分析做成云端的SaaS服务后,开发人员将不再需要维护大量系统和工作流。最重要的一点,我们大幅度的降低数据分析埋点才可以详细地收集用户数据的这个巨大的限制,只需要结合业务需求,进行简单的拖拽实现定制化的数据采集规则。
流处理和云两种技术的结合,会使数据像雨滴一样,慢慢聚集在云端的服务器里面开始积累,用户将不再需要做大量的IT的基础设施的工作,或者是做各种数据清洗、整合、线上、线下聚合。
张梦溪表示,“在未来分工化、协作化的格局下,企业应该将一些相对支持性的功能外包给真正的专家或者是产品,专注做好自己最擅长的事情,所以数据分析云端化这是一个必然的趋势。”
WOT峰会将分享如何用数据化运营创造商业价值
在11月28-29日由主办位于深圳的【“互联网+”时代大数据技术峰会】中,张溪梦将带来目前最先进的全自动化数据分析的相关技术和方法论,并与大家探讨何利用实时数据分析,帮助企业最大程度地创造商业价值。
采访最后,张溪梦描述了这样的愿景:“我希望现在的企业家们都能看到云端数据分析自动化的趋势,未来每一家企业和个人都可以做自己最擅长和关注的工作,一起来把这个世界构建的更美好。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31