中国工业大数据的实践与思考
先分享一下我对工业大数据的理解。
简单来讲,工业大数据就是在工业领域信息化相关应用中所产生的海量数据,注意这里的“相关应用”意味着不仅包括企业内和产业链,还包括客户用户和互联网上的数据。
2012年,GE公司率先明确了“工业大数据”的概念。同年麦肯锡的报告中给出了一个有趣的事实:那就是在虚拟经济占主导地位的美国,其工业界蕴含的数据总量反而是最大的。
同时GE公司的报告还揭示了工业大数据所蕴含的巨大价值。
那么,为什么今天提出“工业大数据”?我感觉有几个重要背景,第一是数字化装备和产品的普及,第二装备和产品网络化连接的普及(互联网),第三是企业向服务型制造转型,第四“从摇篮到摇篮”制造的必然要求。无疑“智慧互联设备”、“工业4.0”和“工业互联网”都顺应了这样一个趋势。
下面汇报我自己对工业大数据的几点思考:
工业大数据从哪里来?工业大数据来源于产品生命周期的各个环节,包括市场、设计、制造、服务、再利用各个环节,每个环节都会有大数据,“全”生命周期汇合起来的数据更大,当然企业外、产业链外的“跨界”数据也是工业大数据“不可忽视”的重要来源。
其次,工业大数据和企业已有数据之间的关系?传统企业信息化的“四大件”,广义PLM系统(包括CAX)支持产品开发、ERP系统负责“人财物、产供销”、SCM系统协调供应链,CRM系统关照企业客户和用户,这些系统一般架构在关系数据库系统之上,显然这些系统中的数据是工业大数据,是其中的“20%”部分。
第三,工业大数据和业务流程的关系?传统企业信息化项目一般是从梳理业务流程起步的,流程“主动”、数据“被动”。而工业大数据环境下,要求企业快速满足个性化用户需求,企业僵化的“长流程”,难以适应“实时决策”的要求,需要变“流程驱动”为“数据驱动”,至少是“混合驱动”,“流程”和“数据”深度融合。上述表现,就是我们说的“流程碎片化”,数据成为连接这些“碎片”的媒介。
最后一个思考是,工业大数据有没有“交钥匙”工程?新世纪以来,我国工业界经历了轰轰烈烈的信息化浪潮,“不搞信息化等死,搞了信息化找死”,后半句话告述我们,“信息化”是有难度和风险的,所以“交钥匙”工程成了广大企业所期望的方式。
我个人的观点,工业大数据不存在“交钥匙”工程(至少现在),原因如下:
1) 工业大数据项目主要不是针对“现有业务”,而是针对“未来业务”、“创新业务”的,其魅力在于创新性、不确定性;
2) 工业大数据现在还处在“科学”阶段,人们对数据价值的“提取”方法、技术与工具尚不成熟,特别是以物理规律为发现目标的工业大数据处理更是刚刚起步;
3) 人们普遍认同的“领域专家”、“统计专家”和“软件专家”组成的协同团队,是当前“大数据”深度应用的有效方法。
最后,和大家分享一下我们在工业大数据方面的“小实践”:
在工业产品全生命周期的各个阶段都有大数据,比如设计阶段引入用户社区数据,制造阶段使用机床在线测量数据,在市场营销阶段使用社交网络数据等。在这里,和大家分享一下使用过程中产生的装备工况大数据。
首先,工况大数据平台不是单独存在的,需要嵌入企业已有信息系统,比如客户服务系统,需要将大数据系统与SQL系统进行融合协同应用,有时需要切换原来的数据管理系统,在实践中我们总结出“四阶段”切换方案。
根据我们的实践,工况大数据的典型应用场景如下页面所示:
首先看时空监管的例子。当得到工况数据以后,首先是对一般运营进行监管,不同于传统的运营监管,在大数据技术支持下,运营是成套设备互相协同的运营,例如:以搅拌站为例,通过收集位置数据、油位数据可以对搅拌车运输的过程进行优化调度,从而避免拥堵、减少等待、降低能耗。
再举个例子,我们知道液压系统是工程机械的核心系统之一,导致故障的原因有很多,例如:密封套腐蚀,内壁刮花,密封环损坏,阀块受损,等等。有了工况大数据就可以寻找深层次原因。
有了工况大数据,我们通大规模过比对开工指标,从典型取值、波动幅度、回传密度多个维度进行分析,自动搜索推荐与故障车辆关系密切的特征工况,发现这些故障车辆的每分钟换向次数在变化幅度上高度相关。
再通过引入互联网上的行政区划数据和历年高铁建设数据(企业外部数据),可以得出这样一个结论,这些典型故障均发生在2012年~2013年期间在建重大工程“杭深高铁”沿线,这为我们寻找更深层次的原因提供了重要线索。
最后,我们可以通过大规模工况数据透视宏观装备应用情况,可以根据这些信息,进行易损配件需求的预测,优化调配我们的服务资源,甚至我们可以推测各地宏观经济情况。
这里我想说,工业大数据刚刚起步,需要冷静思考,坚持应用驱动,最终实现我们的目标。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10