谁在恐惧大数据_数据分析师
阿里巴巴是“数据窃取者”吗?腾讯可以“监控”我的聊天记录吗?百度会记录我所有的搜索记录吗?最近,一系列关于数据的事件又重新把媒体和公众引向关于大数据的最初的是非问题:大数据会不会泄露个人的隐私,最终,像《黑客帝国》所揭示的那样,人被电脑所控制。
实际上,对大数据的宣传与布道,可以说是互联网公司最乐于见到的:显得公司有未来感、有科技感、有益于社会、有益于用户。但实际上,全球范围内对大数据的应用都处于初级阶段,大数据最有益的应用其实不在于事后分析,推进和改善业务,而在于做以前做不到的事情。但是即便如此,外界对于数据安全的担忧就已经达到了相当程度:大公司会不会成为“数据窃取者”?或者说,它们会不会成为big brother,知道所有人的所有事,一旦“作恶”,后果不堪设想?
这个时候,不免要提到关于大数据的几个误解:
第一,大数据的积累靠“偷”?
付费通和支付宝“分手”之后,付费通暗示,是支付宝过量的用户数据查询导致其系统成本增加而最终导致分手。也就是说,付费通在指责支付宝“偷”数据。在这里我们不讨论这两家公司的恩怨是非,我们需要厘清的是,数据的积累,真的是靠“偷”?
如此理解的人,还是将大数据理解为“数量大”的数据,且越大越好。但是,大数据的精髓和要义,不在于大,而在于在线、可用和流动。要说“大”数据,欧洲对撞实验室做一次实验产生的数据,100个BAT分析不完。而以往存储在磁带、胶片,甚至是现实世界中产生的大多数数据,都不能对未来的事情有所助益——因为它们还没有在线。
互联网普及之后,产生的数据可谓多,而Google找 到了人们对数据使用的路径,做成了搜索引擎,把数据做成了生意。所以说,大数据的本质不在于“大”,而在于在线、可用、流动。要抓住大数据的机遇就一定要 在观念上打破“垄断”数据的想法,数据不能利用起来就是一堆只会占用存储空间的无用字节而已。一些传统企业由于缺乏足够的大数据技术和经验,面对大数据的 浪潮可能习惯性采取“自我封闭”的做法,这无非只能让自己与时代更为脱节。而即使是阿里、腾讯、百度这样的大型互联网公司,看似掌握了海量的数据,但和整 个社会的积累相比也只是九牛一毛而已,同样需要在数据上跟外部保持开放和分享,并思考一条让数据分享双方都能获益和实现数据增值的途径。
第二,到底怎么靠数据赚钱?
数据不是个新鲜的东西,电力公司有你所有电力消费的信息甚至你的家庭住址,移动运营商有你所有话费消费的信息,医院有你的健康信息,但怎么发掘这些数据更大 的价值?大数据的真正价值当然不是用来预测世界杯,目前所有的大数据应用中,真正称得上商用化产业化的还是在网络贷款方面。
还记得银行对小微企业是怎么放贷的呢?情况是:根本不放贷。因为评估风险的成本过高:银行派个人实地考察下,查查水表电话,支出的人力物力成本就上千了;另一方面,阿里小贷一笔放贷的成本却不超过1块钱,那么,这种成本的节省,甚至导致模式的变化,怎么衡量“赚了多少钱”?很难衡量。
总的来看,实际上互联网公司目前用大数据“赚钱”有两种模式:一是,提供基础的大数据处理能力,面向业界,收租用费;二是通过数据共享和交换开拓新的商业模式,共同分润。
第一种模式,已经有很多案例。例如脸萌团队租用某云基础设施,每月只有73块钱IT费用的案例被广为传播。
第二种模式的则比第一种模式要复杂。例如腾讯,可以将交易数据、社交网络中的有效数据脱敏之后提取出来,与一些功能性网站(如世纪佳缘、51Job、 赶集网、大众点评)等等合作。背后的逻辑就是:在网购方面信用好的人,也许在婚恋问题上作弊的可能性小。另外,阿里、腾讯两家都收购或者入股了地图公司,那么电商数据能不能和地理位置信息打通,能不能给在支付宝上买了车险的人(肯定是有车族)提供定制服务?支付宝能不能和中石油中石化合作,直接把加油站变成 自提点?由此开始畅想,合作机会和可能的商业模式就多得多。
第三,大公司能做所有的事?
一个不得不承认的事实是:只有大公司有做数据基础设施的财力物力和人力。但大公司并不能办成所有的事。大数据的商业价值在于使用大数据的公司做得好,而平台公司的意义,就在于提供好用的数据工具和基础设施。
从阿里、腾讯、百度几家做云计算(数据处理的基础)的历程来看,建立自主的,能适应互联网要求、弥补IOE(IBM、Oracle、EMC)弹性差劣势的基础设施,投入在5年以上是一个基本量。阿里云、腾讯曾经的“台风”项目、百度的“金字塔”项目都是历经坎坷,有的逐步走向成功,有的夭折于短期效果和长期效果的平衡中。
家大业大才能玩大数据,但大公司并不能包揽整个大数据时代。原因主要在于:第一,大数据需要盘活,而盘活需要流动、需要共享。不然“大数据”只是“数据 大”。而流动和共享则来自于大型平台与多种垂直类网站的合作,更多的,在于和非互联网公司的合作。
第二,大型互联网公司的优势在于平台本质:做平台,而不亲自下场做具体业务。对各行业公司来说,数据的盘活和利用在于对行业的深刻理解,这是互联网公司本身所难以达到的。
第四,为什么没有大数据的经典案例出现?
前几年,Google数据预测流感的案例曾被广为传播。啤酒与尿布的案例则是像一块儿铁,在众人的口中生了锈。而各互联网公司用来博眼球的所谓大数据分析球赛、高考作文、春运等,其本质无非是一张Excel表单,只是事后统计,并没有进一步的预测、影响经济决策的作用。
是不是人们对于大数据的效果过于渴求了?是不是互联网公司在人口红利逐渐消失时,对新的商业机会的过于期待了?可以肯定的是,目前,对数据的应用,理解,甚 至合理的存储方式,都还处于初级阶段。对于可作为未来核心竞争力的资产,数据并不会像绚烂的烟花绽放,更像空气、水、电,以一种无声的方式浸入和改变世 界。
而我们要做的,无非是不要让恐惧排挤了精彩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31