谁在恐惧大数据_数据分析师
阿里巴巴是“数据窃取者”吗?腾讯可以“监控”我的聊天记录吗?百度会记录我所有的搜索记录吗?最近,一系列关于数据的事件又重新把媒体和公众引向关于大数据的最初的是非问题:大数据会不会泄露个人的隐私,最终,像《黑客帝国》所揭示的那样,人被电脑所控制。
实际上,对大数据的宣传与布道,可以说是互联网公司最乐于见到的:显得公司有未来感、有科技感、有益于社会、有益于用户。但实际上,全球范围内对大数据的应用都处于初级阶段,大数据最有益的应用其实不在于事后分析,推进和改善业务,而在于做以前做不到的事情。但是即便如此,外界对于数据安全的担忧就已经达到了相当程度:大公司会不会成为“数据窃取者”?或者说,它们会不会成为big brother,知道所有人的所有事,一旦“作恶”,后果不堪设想?
这个时候,不免要提到关于大数据的几个误解:
第一,大数据的积累靠“偷”?
付费通和支付宝“分手”之后,付费通暗示,是支付宝过量的用户数据查询导致其系统成本增加而最终导致分手。也就是说,付费通在指责支付宝“偷”数据。在这里我们不讨论这两家公司的恩怨是非,我们需要厘清的是,数据的积累,真的是靠“偷”?
如此理解的人,还是将大数据理解为“数量大”的数据,且越大越好。但是,大数据的精髓和要义,不在于大,而在于在线、可用和流动。要说“大”数据,欧洲对撞实验室做一次实验产生的数据,100个BAT分析不完。而以往存储在磁带、胶片,甚至是现实世界中产生的大多数数据,都不能对未来的事情有所助益——因为它们还没有在线。
互联网普及之后,产生的数据可谓多,而Google找 到了人们对数据使用的路径,做成了搜索引擎,把数据做成了生意。所以说,大数据的本质不在于“大”,而在于在线、可用、流动。要抓住大数据的机遇就一定要 在观念上打破“垄断”数据的想法,数据不能利用起来就是一堆只会占用存储空间的无用字节而已。一些传统企业由于缺乏足够的大数据技术和经验,面对大数据的 浪潮可能习惯性采取“自我封闭”的做法,这无非只能让自己与时代更为脱节。而即使是阿里、腾讯、百度这样的大型互联网公司,看似掌握了海量的数据,但和整 个社会的积累相比也只是九牛一毛而已,同样需要在数据上跟外部保持开放和分享,并思考一条让数据分享双方都能获益和实现数据增值的途径。
第二,到底怎么靠数据赚钱?
数据不是个新鲜的东西,电力公司有你所有电力消费的信息甚至你的家庭住址,移动运营商有你所有话费消费的信息,医院有你的健康信息,但怎么发掘这些数据更大 的价值?大数据的真正价值当然不是用来预测世界杯,目前所有的大数据应用中,真正称得上商用化产业化的还是在网络贷款方面。
还记得银行对小微企业是怎么放贷的呢?情况是:根本不放贷。因为评估风险的成本过高:银行派个人实地考察下,查查水表电话,支出的人力物力成本就上千了;另一方面,阿里小贷一笔放贷的成本却不超过1块钱,那么,这种成本的节省,甚至导致模式的变化,怎么衡量“赚了多少钱”?很难衡量。
总的来看,实际上互联网公司目前用大数据“赚钱”有两种模式:一是,提供基础的大数据处理能力,面向业界,收租用费;二是通过数据共享和交换开拓新的商业模式,共同分润。
第一种模式,已经有很多案例。例如脸萌团队租用某云基础设施,每月只有73块钱IT费用的案例被广为传播。
第二种模式的则比第一种模式要复杂。例如腾讯,可以将交易数据、社交网络中的有效数据脱敏之后提取出来,与一些功能性网站(如世纪佳缘、51Job、 赶集网、大众点评)等等合作。背后的逻辑就是:在网购方面信用好的人,也许在婚恋问题上作弊的可能性小。另外,阿里、腾讯两家都收购或者入股了地图公司,那么电商数据能不能和地理位置信息打通,能不能给在支付宝上买了车险的人(肯定是有车族)提供定制服务?支付宝能不能和中石油中石化合作,直接把加油站变成 自提点?由此开始畅想,合作机会和可能的商业模式就多得多。
第三,大公司能做所有的事?
一个不得不承认的事实是:只有大公司有做数据基础设施的财力物力和人力。但大公司并不能办成所有的事。大数据的商业价值在于使用大数据的公司做得好,而平台公司的意义,就在于提供好用的数据工具和基础设施。
从阿里、腾讯、百度几家做云计算(数据处理的基础)的历程来看,建立自主的,能适应互联网要求、弥补IOE(IBM、Oracle、EMC)弹性差劣势的基础设施,投入在5年以上是一个基本量。阿里云、腾讯曾经的“台风”项目、百度的“金字塔”项目都是历经坎坷,有的逐步走向成功,有的夭折于短期效果和长期效果的平衡中。
家大业大才能玩大数据,但大公司并不能包揽整个大数据时代。原因主要在于:第一,大数据需要盘活,而盘活需要流动、需要共享。不然“大数据”只是“数据 大”。而流动和共享则来自于大型平台与多种垂直类网站的合作,更多的,在于和非互联网公司的合作。
第二,大型互联网公司的优势在于平台本质:做平台,而不亲自下场做具体业务。对各行业公司来说,数据的盘活和利用在于对行业的深刻理解,这是互联网公司本身所难以达到的。
第四,为什么没有大数据的经典案例出现?
前几年,Google数据预测流感的案例曾被广为传播。啤酒与尿布的案例则是像一块儿铁,在众人的口中生了锈。而各互联网公司用来博眼球的所谓大数据分析球赛、高考作文、春运等,其本质无非是一张Excel表单,只是事后统计,并没有进一步的预测、影响经济决策的作用。
是不是人们对于大数据的效果过于渴求了?是不是互联网公司在人口红利逐渐消失时,对新的商业机会的过于期待了?可以肯定的是,目前,对数据的应用,理解,甚 至合理的存储方式,都还处于初级阶段。对于可作为未来核心竞争力的资产,数据并不会像绚烂的烟花绽放,更像空气、水、电,以一种无声的方式浸入和改变世 界。
而我们要做的,无非是不要让恐惧排挤了精彩。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20