在电子商务过程中你需要使用何种数据来衡量表现
你有一个在线的生意吗?如果你的企业需要衡量表现,不要被蒙在鼓里。
在线商业和传统生意相比主要的优势是每一个单块的数据都可以被衡量。但并不是很多在线零售商多从这一进步当中获利。这不只是说你需要安装网络分析工具,你还需要能够理解这些数据,并且做出可以执行的决策,来让你的在线商业获得成长。
在我们开始之前,你需要掌握的最重要的数据包括:你的商业目标是什么?你在今年,明年,未来三年或者更长时间想要达到的在线商业销售额是多少?如果你对此完全没有线索,你可以用至少十二个月的未来商业成长预测来作为开始。举例说,是环比增长20%还是同比增长25%?
一旦你设立商业目标,而且也明白你有多少预算,你就可以深入观测你数据的主要部分,并且致力于实现你的商业目标,最后当然可以获利。
关键度量
衡量你在线业务的所有数据并不难,每一件事都是用这个黄金公式来开始的。这用来判断在线营收的起源。
在线收入 = 独立访问量 (UV) X 转换率 (CVR) x 平均订购量 (AOV)
对于上面的方程来说很明显,你需要增加流量转化率,以及/或者平均订单量,来增加你的在线销售额。如果你接受线下付款,你还需要把付费率(PR)放到上面的方程中。
我们的推荐方法是,根据营销渠道的不同,来分解这个方程。像这样:
以上是一个例子,你需要包括商业模式当中所有可能的营销渠道,比如关联和参考系等等。你完全可以进一步分解营销渠道,比如比起仅仅分类为社交网络,可以将它们分解到微博、微信等不同的特殊渠道。
丢弃率
如果你的转化率 (CVR)不尽如人意的话,有一个特别重要的衡量标准就是丢弃率(abandonment rate)。
我们在这里并不仅仅谈论把购物车中的东西放弃购买。你需要从着陆页开始就开始测量。这是你的首页,活动专门页面或者其他任何一个消费者可能首次登陆你在线网站的页面。
然后请测量你的着陆页当中的回弹率(bounce rate)。人们在到达你的网站之后是离开了,还是访问站内其他网页?这可能甚至都不包括将产品放入购物车。而且你需要知道为什么发生了这些?这可能是因为你的营销渠道,让着陆之后的用户来到了错误的地方吗?你需要继续优化你的着陆页吗?
自然,衡量购物车丢弃率(shopping cart abandonment rate)是同等重要的,如果十个访问者中有九个人在选购一些东西之后没有付款就走掉了,事情就很糟糕。尤其是如果你投资,希望他们首先能够到达你网站的情况下。
你不仅需要通过购物车检验程序,在技术上优化你的购物车环节,还有一件事也很重要,就是明白什么样的产品具有高的丢弃率。还有,最好给你的顾客打电话,问一问他们为什么离开。
获得消费者的支出
除非你通过搜索引擎优化(SEO)已经能够稳定地获得来自网站的流量——当然不是通过付费搜索,你就需要投入一笔必要的资金来为你的在线商店获得流量。
当然你需要用你喜欢的分析工具来区分新用户和老用户。
对于新用户来说,他们转变成你顾客的比例有多少?这就是我们衡量所谓顾客获得支出(Customer Acquisition Cost (CAC))的办法。简单来说就是你花了多少钱获得了一位顾客。如果你花了100美元来让5个人在你的网站上买东西,你的顾客获得支出就是40美元。
实际上,并不难理解为什么很多的在线零售商提供20美元的折扣券给第一次来的顾客。这实际上是他们顾客获得成本的一部分;还要加上让用户第一次来到他们的在线商店看看的成本。
除了新客户,下一步是衡量你回头客当中的平均保留率( average retention rate)。你需要知道客户们是不是在重复购买?他们回来的频率,以及他们重复购买时一般的行为是什么样的?
千万不要疏忽后一部分。因为让已经过来的顾客来买东西,总比转化新人要简单的多。
顾客的终身价值
实际上这已经在之前衡量保留率的度量标准当中提到过,毫无疑问这将是所有衡量标准当中最重要的一项,这就是顾客终身价值(Customer Lifetime Value (LTV))。
从核心上来说,电子商务是简单的生意,如果终身价值大于顾客的获取成本,那么你就可以赚钱,如果不是的话,你就不赚钱。很简单。
是的,正如上面的这一句语录所说的,如果你不明白这个公式,你最好就不要做电子商务了。
现在我们怎么横量这一指标?很简单,这是你从客户身上获得的投射净利润。如果你从顾客身上获得的净利润比用户获取的花费要低,你就有麻烦了。
我们在这里来做一些计算。假设一个用户花了500美元购买了4样东西,净利润是100美元。这是500美元的20%,同时也是在这个顾客上所获得的终身价值。如果获取这个用户的花费是40美元,你还可以赚到60美元,你的商业模式就是健康的。
简单的说,根据终身价值所测算的净利润,应该高于获取用户的支出。至少从长远来说必须达到这一点。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13