数据可视化6步法
在当前互联网,各种数据可视化图表层出不穷,本文尝试对数据可视化的方法进行归纳,整理成6步法。
一般的数据图表都可以拆分成最基本的两类元素: 所描述的事物及这个事物的数值,我们暂且将其分别定义为指标和指标值。比如一个性别分布中,男性占比30%,女性占比70%,那么指标就是男性、女性,指标值对应为30%、70%。
一个指标值就是一个数据,将数据的大小以图形的方式表现。比如用柱形图的长度或高度表现数据大小,这也是最常用的可视化形式。
传统的柱形图、饼图有可能会带来审美疲劳,可尝试从图形的视觉样式上进行一些创新,常用的方法就是将图形与指标的含义关联起来。
比如Google Zeitgeist在展现top10的搜索词时,展示的就是“搜索”形状的柱形,图形与指标的含义相吻合,同时也做了立体的视觉变化:
一般用与指标含义相近的icon来表现,使用场景也比较多,如下:
当存在多个指标时,挖掘指标之间的关系,并将其图形化表达,可提升图表的可视化深度。常见有以下两种方式:
联想自然或社会中有无场景与指标关系类似,然后借助此场景来表现。
比如百度统计流量研究院操作系统的分布,首先分为windows、mac还有其他操作系统,windows又包含xp、2003等多种子系统。
根据这种关系联想,发现宇宙星系中也有类似的关系: 宇宙中有很多星系,我们最为熟悉的是太阳系,太阳系中又包括各个行星, 因此整体借用宇宙星系的场景,将熟知的windows比喻成太阳系,将xp、window7等比喻成太阳系中的行星,将mac和其他系统比喻成其他星系,表现如下:
指标之间往往具有一些关联特征,如从简单到复杂、从低级到高级、从前到后等等。如无法找到已存在的对应场景,也可构建场景。
比如百度统计流量研究院中的学历分布,指标分别是小学、初中、高中、本科等等,它们之间是一种越爬越高,从低等级到高等级的关系,那么,这种关系可以通过构建一个台阶去表现,如下:
支付宝新出的个人年度账单中,在描述付款最多的三项时,构建了一个领奖台的形式:
根据之前3步,可将指标、指标值和指标关系分别进行图形化处理。
以最简单的性别分布为例,可以得到一个线性的可视化过程,如下:
以上图示为供参考的线性化过程,实际可视化思考中,将哪类元素进行图形化或者图形化前后的顺序可能均有不同,需根据具体情况处理。
通过时间的维度来查看指标值的变化情况,一般通过增加时间轴的形式,也就是常见的趋势图。
当图表存在地域信息并且需要突出表现的时候,可用地图将空间可视化,地图作为主背景呈现所有信息点。
Google Zeitgeist在2010和2012年的年度热门回顾中,都是以地图为主要载体(同时也结合了时间),来呈现热门事件:
先看下生活中的概念转换,当我们需要喝水时,通常会说:给我来一杯水;而不会说:给我来30ml的水。在这里,30ml是一个实际数据,但是难以感知,所以用一杯的概念来转换。
同样在数据可视化,有时需要对数据进行概念转换,可加深用户对数据的感知。常用方法有对比和比喻:
下图是一个介绍中国烟民数量的图表:如果只看左半部分中国烟民的数量:32000000,知道数据量级很大,但具体有多大却很难感知;直到看到右半部分:中国烟民数量超过了美国人口总和,这样一对比,对数据的感知就加深了。
下图是一个介绍雅虎邮箱处理数据量的图表,大意是每小时处理的电子邮件大小有1.2TB,相当于644245094张打印的纸。
这又是一个很大的数据,但到底有多大? 在这里用了一个比喻的手法:644245094张纸,如果把每一张纸首尾对接,可以绕地球4圈多。到这里,能较深刻感受到雅虎邮箱处理的数据量之大,为地球节省了很多纸张。
更进一步地,还将这个比喻进行了图形化表现。
数据图形化完成后,可结合实际情况,将其变为动态化和可操控性的图表,用户在操控过程中能更好地感知数据的变化过程,提升体验。
实现动态化通常以下两种方式: 交互和动画。
交互包括鼠标浮动、点击、多图表时的联动响应等等,如下是百度统计流量研究院的时间分布图,采用左图右表的联动形式,左图中,鼠标浮动则显示对应数据,点击则切换选择:
包括增加入场动画、交互过程的动画、播放动画等等。
入场动画:即在页面载入后,给图表一个“生长”的过程,取代“数据载入中”这样的提示文字。
交互动画:用户发生交互行为后,通过动画形式给以及时反馈。
播放动画:一般来是提供播放功能,像看视频一样,让用户能够完整看到数据随时间变化的过程。下图是Gapminder在描述多维数据时,提供随时间播放的功能,可以直观感受到所有数据的变化。
数据可视化形式多样,思考过程也不尽相同。以上6步法,是基于“数据”层面(区别于信息可视化),梳理思考过程,总结设计方法,为后续可视化提供可借鉴的思路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29