DT数据时代,数据本身才是问题所在
最近和一些互联网企业交流,无论所在什么细分行业,在数据分析方面的动向可以总结为两类:或在寻找专业的第三方数据分析产品,或在寻找能lead组建数据分析团队的候选人。看来马云说的“人类正从IT时代走向DT (Data Technology) 时代”,所言不假。毋庸置疑,数据的重要性正在逐渐被认识到。而谈起数据分析团队耗时最多的一件事情,无它,唯独数据的采集、清洗、整理。是的,太多采集到的数据需要整理,另外还有更多的数据需要去采集。
很多互联网企业的业务都在飞速发展中,业务规模和产品都有很大的变更,产品经理或者数据分析师都很难在当下预测下个月甚至下一周的数据需求,要看数据的时候没有数据,而采集数据需要耗费业务人员与工程人员较高的沟通成本,更甚者还涉及产品的版本发布协调排期;或者产品已经上线,但发现采集的数据是错误的,对于众多app来说,只能等下次发版。总之,数据的供给总不是满足不了业务的需求。以上场景还只是管中窥豹,但可以充分说明一点,数据的采集,清洗和处理已经耗费了大量时间,而数据源头的堵塞又会进一步影响需要需要数据来支撑的业务决策的效率。
从另一个维度来看,企业内部会有销售、市场、产品、运营、财务等不同部门,不同的部门在使用着传统ERP、CRM或各类SaaS软件,这些数据在不同的软件里流动,相互之间完全断裂,数据大而不可通用。最近GrowingIO的一些客户反馈,他们内部有完善的后端交易数据,客户属性数据,这些还是具有远见的老大在早期就开始筹备和收集,但是一段涉及到客户进行数据分析的时候,同样只得无奈,因为这些相对更新频次较低的后台数据无法实时反馈客户当前的情况,对于一个半年前已经购买SaaS产品的客户,如何能了解到他当前的使用状况和对产品的满意程度?后端数据需要与更实时的用户行为数据结合才能反映实际问题。是的,前后端的数据需要打通,更大的价值才能产生。
越来越廉价的硬件,以及云的逐渐普及,使得拥有大量的数据对很多企业来说并不是难事。TB、PB这些曾经的海量数据单位,很多企业已经轻松跨越。但事实是,大量的企业将无数的时间、人力投入在海量数据的清洗整理和不同平台数据的聚合上。要知道原始数据是混乱和无效的,并不能直接地传达信息,更不代表决策和洞察。所以数据量越大,清洗和数据整理反而成了一项极其浩大而低价值的工作。而真正的价值,数据的分析,商业的洞察又必须建立在完成这些数据采集,清洗,管理,存储等等一系列浩大的工程之后。
大部分企业将90%的时间花在埋点、标签规范、数据存储、管理、ad-hoc分析等低价值但是费时费力的事情上,而真正产生数据价值的业务分析只需要10%的时间,但是鲜有企业能够达到。
或者即便达到,却需要经过一段长期的煎熬,无法快速达到数据分析反哺业务的阶段。这产生的后果是灾难性的,因为大量的决策是凭着直觉和经验做出来的。但是今天互联网圈的竞争和发展速度一日千里,无论是企业的高层管理者还是一线的PM,业务人员都需要快速地通过数据来反哺业务,做出有效的决策并快速行动。前段时间拜访某大型互联网公司负责人,作为创始人兼CEO的大佬开玩笑谈到:“回想过去几年的发展,仿佛是闭着眼睛开飞机,而且边开还要边修飞机,能快速发展到今天是幸运的。未来继续做大做强,一定要合理的通过数据来决策。”
绝大部分的企业,在意识到要用数据驱动业务之后,数据量开始从B到TB,甚至到PB的增长,但却反而淹没在大量的数据中。这并不是方向错误,而是真正搭建一个好的数据分析基础太难,从技术架构,平台搭建,业务梳理,数据采集,商业分析,知识和技术跨度巨大,就像金字塔,每爬一个台阶都需要大量的投入。然而即便勤奋也是不够的,因为你需要一个了解技术框架,能理解业务以及具备强大数据分析能力的人来领导这样一个团队。但这样的人才,在国内拿望远镜也找不到。千兵易得,一将难求。
在美国,数据分析是一个相对成熟的产业。在每个环节——数据采集,不同来源的数据聚合整理,BI可视化,甚至市场、销售、产品等每个维度,都有许许多多的公司能提供专业性服务。根据产业研究公司Wikibon在国外的数据研究显示,在企业对数据工具投资当中,有52%的资金流向了用于采集和组织数据的技术之上,让数据的获取和分析变得更容易。但在国内,一定是远远达不到这样的数据。一方面是企业对数据的认识,数据驱动业务的实践摸索当中,企业负责人的认识还不够成熟,另一方面是真正能够提供专业服务的公司还不如美国成熟,缺乏专业的产品和服务。
DT时代来临,企业应持具有远见的战略眼光迎接这个时代,充分利用数据的价值来驱动企业的健康和持续成长,但同时也应该意识到,“大”的数据本身也是问题。如何乘势而上,需要借助专业外部产品和团队,尽可能地解决可以通过外部解决的问题,让数据分析师和业务人员将更多精力花在业务分析和数据决策以及行动上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13