大数据时代如何赢得财务人才
们的数字世界正在像小宇宙一样呈爆发式扩张,到2020年,数据将会从4.4万亿千兆字节增长到44万亿千兆字节。根据IDC分析机构的最新数字显示,全球数据量每两年就增加一倍以上。那么问题来了,谁在使用这些数据呢?他们又通过这些数据获得了什么?
事实上,通过大数据获取的洞察早已超过了数据科学家的业务范畴,这些洞察深入企业业务的核心,影响到企业的利润和损失、投资和撤资决策、风险管理和增长预 测等等各个方面。在这一领域,企业的“首席财务官”是当仁不让的关键人物,他们肩负着了解这些信息,并将其有效传递给企业其他部门的重要使命。
在首席财务官的领导下,财务部门将逐渐从幕后移向台前,担负起新的业务模式,例如确认、监测,管理财务风险和报酬。他们需要深入挖掘海量数据以获取价值,随后能够把这些价值传递给市场、人力、销售和企业的其他部门,以帮助这些部门制定战略并找到解决方案。
与过去相比,这些工作需要财务人才具备更广泛的技能。根据WSJ Custom Studios与甲骨文合作发布的最新报告显示,商业领袖们正在调整他们的招聘战略,以确保他们的财务人员能随时准备好应对这个新的大数据时代。
纽约大学Langone医疗中心首席财务官Mike Burke表示:“我们招募的人不一定是拥有会计学位的财务人员”。相反,我们更需要的是那些知道如何使用数据中深藏的价值的人才,是那些了解编程,能够查询大量交易系统的人才。
但是有些时候,作为财务专业人员还需要更多的分析思维。他们还需要具备软性技能,即能够在整个企业范围内激励、动员和引导其他部门之间的协同合作。
专业性化学品公司禾大(Croda)的首席财务官表示:“软性技能是必要的。你不能指望财务功能完全像一个大型的计算机系统一样,不需经过培训就能告诉你所有东西,或者希望其他同事能立即了解那些对财务人才来说显而易见的东西。”
根据麦肯锡的报告显示,到2018年将会出现19万分析技能员工的缺口,以及150万大数据领域管理人员和分析师的缺口,而这仅仅是在美国。
甲骨文全球金融业务高级副总裁Ivgen Guner在内部人才培养中获得了巨大的成功。她的部门曾经招募了一名毕业生,她一开始只是处理一些入门级的任务,随后这个年轻女孩展示了她在面对挑战和 激励他人方面的天赋。Guner和其他同事的严格辅导磨练了她在数据分析和与人沟通方面的技能。现在这个年轻女孩已经成长为甲骨文副总裁,当部门需要灵活 的分析和协调软技能的时候,她总能担当重要的角色。
让财务专业人员能够使用最创新的技术是OvationBrands首席财务官Keith Kravcik采用ERP云解决方案的原因之一,这一解决方案是这家总部位于明尼阿波利斯的连锁餐厅实现了财务现代化。
Kravcik希望能帮助Ovation进行重新改造,通过采用基于云的财务和绩效管理,他得以对其位于美国的300多家连锁餐馆进行全面的业绩观察。 Kravcik回忆道:“我们之前使用的一个老版本的Excel,一些新员工甚至都没听说过,更别说有任何经验了。为了吸引我所需要的分析型人才来推动我 们的重塑战略,我必须部署最先进的技术,让候选人能够在他们所选择的设备上使用最新的分析工具。云交付模式为我的财务团队提供了很多先进的技术体验,更易 于使用、成本更低。”
现代化的财务部门需要“软硬兼备”的人才,不但需要具备基本的财务技能,还要能够与其他业务部门协调、谈判、沟通、做出正确的战略判断,还有一点更重要 的,就是掌握最新的技术。当然,要找到拥有多元化技能的人才并不容易。企业需要对合适的人才进行投入和培养,并让他们获得最先进的技术和工具。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22