大数据分析到底需要多少种工具?
摘要
JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率最高,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?”这一问题展开讨论,总结机器学习领域多年来积累的经验规律,继而导出大数据分析应该采取的策略。
1.分类方法大比武
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
机器学习
图1 机器学习分类体系
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
2.几点经验总结
大数据分析到底需要多少种机器学习的方法呢?围绕着这个问题,我们看一下机器学习领域多年得出的一些经验规律。
大数据分析性能的好坏,也就是说机器学习预测的准确率,与使用的学习算法、问题的性质、数据集的特性包括数据规模、数据特征等都有关系。
一般地,Ensemble方法包括Random Forest和AdaBoost、SVM、Logistic Regression 分类准确率最高。
没有一种方法可以“包打天下”。Random Forest、SVM等方法一般性能最好,但不是在什么条件下性能都最好。
不同的方法,当数据规模小的时候,性能往往有较大差异,但当数据规模增大时,性能都会逐渐提升且差异逐渐减小。也就是说,在大数据条件下,什么方法都能work的不错。参见图2中Blaco & Brill的实验结果。
对于简单问题,Random Forest、SVM等方法基本可行,但是对于复杂问题,比如语音识别、图像识别,最近流行的深度学习方法往往效果更好。深度学习本质是复杂模型学习,是今后研究的重点。
在实际应用中,要提高分类的准确率,选择特征比选择算法更重要。好的特征会带来更好的分类结果,而好的特征的提取需要对问题的深入理解。
大数据
图2 不同机器学习方法在数据集增大时的学习曲线。
3.应采取的大数据分析策略
建立大数据分析平台时,选择实现若干种有代表性的方法即可。当然,不仅要考虑预测的准确率,还有考虑学习效率、开发成本、模型可读性等其他因素。大数据分析平台固然重要,同时需要有一批能够深入理解应用问题,自如使用分析工具的工程师和分析人员。
只有善工利器,大数据分析才能真正发挥威力。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14