大数据分析到底需要多少种工具?
摘要
JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率最高,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?”这一问题展开讨论,总结机器学习领域多年来积累的经验规律,继而导出大数据分析应该采取的策略。
1.分类方法大比武
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
机器学习
图1 机器学习分类体系
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
2.几点经验总结
大数据分析到底需要多少种机器学习的方法呢?围绕着这个问题,我们看一下机器学习领域多年得出的一些经验规律。
大数据分析性能的好坏,也就是说机器学习预测的准确率,与使用的学习算法、问题的性质、数据集的特性包括数据规模、数据特征等都有关系。
一般地,Ensemble方法包括Random Forest和AdaBoost、SVM、Logistic Regression 分类准确率最高。
没有一种方法可以“包打天下”。Random Forest、SVM等方法一般性能最好,但不是在什么条件下性能都最好。
不同的方法,当数据规模小的时候,性能往往有较大差异,但当数据规模增大时,性能都会逐渐提升且差异逐渐减小。也就是说,在大数据条件下,什么方法都能work的不错。参见图2中Blaco & Brill的实验结果。
对于简单问题,Random Forest、SVM等方法基本可行,但是对于复杂问题,比如语音识别、图像识别,最近流行的深度学习方法往往效果更好。深度学习本质是复杂模型学习,是今后研究的重点。
在实际应用中,要提高分类的准确率,选择特征比选择算法更重要。好的特征会带来更好的分类结果,而好的特征的提取需要对问题的深入理解。
大数据
图2 不同机器学习方法在数据集增大时的学习曲线。
3.应采取的大数据分析策略
建立大数据分析平台时,选择实现若干种有代表性的方法即可。当然,不仅要考虑预测的准确率,还有考虑学习效率、开发成本、模型可读性等其他因素。大数据分析平台固然重要,同时需要有一批能够深入理解应用问题,自如使用分析工具的工程师和分析人员。
只有善工利器,大数据分析才能真正发挥威力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13