互联网+物流 大数据在为物流做哪些变革
在大数据方兴未艾、众说纷纭的时刻,大数据在变革车货匹配、运输线路分析、销售预测与库存、设备修理预测、供应链协同管理等方面发生着潜移默化的作用,逐渐改变和影响着物流人的思维方式。
最近一直关注大数据,也时常研究一些大数据方面的文章,在大数据方兴未艾、众说纷纭的时刻,进一步阐述和研究大数据在物流中的应用颇有意义。大数据将逐渐成为现代社会基础设施的一部分,就像物流行业中的公路、铁路、港口、水电和通信网络一样不可或缺!但大数据不会因为人们的使用而折旧和贬值,很多人习惯把物流行业看作是互联网最后一块未开垦的处女地,对大数据的研究还停留在口头上,还没有形成具体的可操作的行动!专注于数据调查的咨询公司麦卡锡则一针见血地指出:“大数据将是堪比石油的重要资源”。
大数据,变革车货匹配
每次到物流园区都看到很多信息部,大量的车辆在园区的停车场候着,有时候等上两三天配不上货也是正常的事,大大浪费了资源,所以才催生了很多以车货匹配的信息平台和APP,且不说车货匹配带来的数据量如何,仅大数据的沉淀积累就有一段漫长的路要走,通过运力池的大数据分析,公共运力的标准化和专业运力的个性化需求之间可以产生良好的匹配,同时,结合企业信息系统也会全面整合与优化。基于大数据实现车货高效匹配,不仅能减少空驶带来的损耗,还能减少污染,是一举多得的好事情!大数据的应用能有效解决公共信息平台上没有货源或货源信息虚假的问题。当前,国内做车货匹配的平台性企业大多还在摸索,效果不佳,运作乏力。
大数据,运输路线优化
下面先看看UPS是如何用大数据优化送货路线的?UPS配送人员不需要自己思考配送路径是否最优,UPS采用Orion系统可实时分析20万种可能路线,3秒找出最佳路径。UPS通过大数据分析规定:卡车不能左转,原因是左转会导致货车长时间等待。未来,UPS将用大数据预测快递员将做什么并及时控制纠正问题。通过运用大数据,物流运输效率将得到大幅提高,大数据为物流企业间搭建起沟通的桥梁,物流车辆行车路径也将被最短化、最优化定制。所以,UPS的司机会宁愿绕个圈,也不要往左转,听着些许荒唐,因为左转而绕远路的费时和耗油真的可以忽略不计吗?根据往年的数据显示,因为执行尽量避免左转的政策,UPS货车在行驶路程减少2.04亿的前提下,多送出了350000件包裹。
大数据,销售预测与库存
通过互联网技术和商业模式的改变,可以实现从生产者直接到顾客的供应渠道的改变。这样的改变,从时间和空间两个维度都为物流业创造新价值奠定了很好的基础。借助大数据不断优化库存结构和降低库存存储成本,运用大数据分析商品品类,系统会自动调用哪些商品是用来促销的,哪些商品是用来引流的,同时,系统会自动根据以往的销售数据建模和分析,以此判断当前商品的安全库存,并及时给出预警,而不再是根据往年的销售情况来预测当前的库存状况,降低库存存货,从而提高资金利用率。通过互联网技术的变化,可以让全国物流业的布局相应地发生一系列调整。从过去生产者全国布局配送中心,逐步演化成为个性化订单,从顾客的需求向上推移,促使整个配送模式的改变。过去是供给决定需求,今后越来越多地从需求开始倒推,按照需求的模式重新设计相应的供给点的安排。这些都是因为大数据时代到来所产生的变革。
大数据,设备修理预测
美国联合包裹服务公司(UPS)从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时地进行防御性的修理。如果车在路上抛锚损失会非常大,因为那样就需要再派一辆车,会造成延误和再装载的负担,并消耗大量的人力、物力,所以,以前UPS每两三年就会对车辆的零件进行定时更换。但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过监测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元。有一次,监测系统甚至帮助UPS发现了一辆新车的一个零件有问题,因此免除了可能会造成的困扰。
大数据,供应链协同管理
随着供应链变得越来越复杂,如何采用更好的工具来迅速高效地发挥数据的最大价值,有效的供应链计划系统集成企业所有的计划和决策业务,包括需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划等。将彻底变革企业市场边界、业务组合、商业模式和运作模式等。建立良好的供应商关系,实现双方信息的交互。良好的供应商关系是消灭供应商与制造商间不信任成本的关键。双方库存与需求信息交互、VMI运作机制的建立,将降低由于缺货造成的生产损失。部署供应链管理系统,要将资源数据、交易数据、供应商数据、质量数据等存储起来用于跟踪供应链在执行过程中的效率、成本,从而控制产品质量。企业为保证生产过程的有序与匀速,为达到最佳物料供应分解和生产订单的拆分,需要综合平衡订单、产能、调度、库存和成本间的关系,需要大量的数学模型、优化和模拟技术为复杂的生产和供应问题找到优化解决方案。
大数据,变革思维方式
物流行业的人们不再认为数据是静止和无价值的,对数据也有了重新认识,但片段性的、短期的数据似乎并未发挥出让人立竿见影看得到的价值!也许,有的企业会死在追求大数据的道路上,当然出现这种结果也是悲壮的!企业管理人员如果没有大数据的理念,就会丢失掉很多有价值的数据,譬如某专线货车价格并不完全依赖于起点和终点,也不完全依赖于公里数,太多影响其价格变动的因素了。
如今,大数据逐渐成为投资公司热衷的领域,也逐渐在成为一种商业资本,未来大数据还能创造更多的出乎意料的价值存在,短期看也许是“虚”的,但一旦转变思维,数据就能激发出更多新点子,创造更多新产品和新型服务,数据的奥妙只为一直追求、愿意聆听且掌握了学习手段的人所知。
加速大数据产业链,需要更先进的分析技术,“互联网+物流”的本质是物流行业经过互联网改造后的在线化、数据化,其前提是互联网作为一种基础设施的广泛安装。“互联网+”仰赖的新基础设施,可以概括为云(云计算和大数据基础设施)、网(互联网+物联网)、端(直接服务个人的设备)三部分,这三个领域的推进将决定“互联网+”计划改造升级物流产业的效率和深度。大数据时代的来临,不是技术的变革,首当其冲是思维的变革,随之而来的将是商业模式的改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29