大数据时代,为何内存分析技术至关重要
据估计,大数据技术和服务市场的规模预计每年拥有27%的增长,市值将于2017 年达到 324 亿美元。增长的主要驱动力来自于构成物联网(IoT)的联网设备所产生的海量数据。据估计,到2020年联网设备的数量将会增加到 300 亿台。海量的结构化和非结构化数据成为许多企业面临的新现实,而这也使物联网不断为企业业务带来新的挑战。
为从物联网的发展中获益,行业已创建了各种新工具和新技术,以控制和转换多样化的海量数据。与此同时,各种解决方案也不断涌现,其中既有传统的分析解决方案,也有 Apache™ Hadoop* 这样的全新框架。这些新框架提供了内存计算功能,即将数据存储在主内存中,而非传统硬盘中。此类内存数据库和分析解决方案,能够在几秒钟或几分钟内完成复杂多样化的数据集的分析,而无需耗费数小时或数天时间,分析复杂多样化数据集的性能获得显著提升,从而为企业实时地提供重要洞察。
如今,内存分析解决方案可帮助企业在几秒内获得重要洞察和全新信息,从而能够更快做出准确决策,并推出针对客户需求量身定制的产品与服务。这种实时分析多样化海量信息的能力将使企业从大数据中获得丰厚回报。
何为实时分析?
企业很少能够奢侈地花费数天或数月的时间来存储和分析数据。如果,无法及时捕获和分析产生的数据,则将阻碍企业建立竞争优势。但是,如果企业能够及时地发现特定机遇,则将能够创造出数以千万乃至数亿美元的收入。分析工具可为企业提供实时信息,帮助企业客观、深入地了解重要业务现象,并为管理者提供基于事实的信息,帮助其基于事实、而非直觉制定决策。全新内存分析解决方案构建于向上扩展系统之上,如基于英特尔®至强™ 处理器 E7 v2产品家族的系统等。这类系统并不是通过传统的硬盘访问数据,而是在内存中分析数据,从而提供实时洞察。事实上,最近已有示例表明,内存分析解决方案的分析速度最高是基于磁盘的解决方案的 148 倍3。
以下案例展示了实时分析环境对于众多行业的重要性:
金融服务
对于金融服务行业而言,其价值在于即时关联各种载体上的数据,得出有洞察力的结论。例如,在欺诈检测中,金融机构能够实时对比典型的消费金额、购买类型和消费地点,并快速标记出与常规活动不符的消费习惯。此外,金融机构还能够检测常见的具有欺诈嫌疑的消费模式,例如,在进行金额较小的试探性购买之后,立即在珠宝或电子产品商店进行大额消费的行为。
医疗
医疗行业是一个关键业务环境,实时分析对于该环境有着至关重要的意义。例如:
· 重症监护室,其诊断依赖于对从多种显示器和设备中获得的患者数据的近乎即时地分析。
· 药房要求其平台能够根据医疗记录分析就诊患者的数据,确保正确配药并确定合适的剂量。
零售
密切关注产品竞争价格的零售商对于实时分析的益处有着最直接的认识,实时分析将能够帮助他们显著增加销量并提升客户体验。但是,高速分析需要大量数据消耗以及实时的数据处理能力,以完成以下任务:
· 获得产品完整的竞争定价情报
· 根据定价、商品分类和库存制定实时的数据驱动型决策
· 捕获和处理来自各种来源的数据,如定价、社交媒体、市场营销、销售和支持等
· 提高收益、利润和市场份额
为何内存对于实时分析至关重要?
内存分析在计算机的主内存中进行,不处理存储在物理磁盘上的数据,为查询整个数据集提供了一种重要方法。这一方法可以显著缩短查询响应时间,让商业智能(BI)和分析应用能够支持企业更快地做出明智的业务决策。
商业智能和分析应用需要在主内存中长期缓存数据,而具有数以TB计可寻址内存的系统将能够支持在计算机主内存中缓存大量数据,如整个数据仓库或数据集市等。
除提供速度极快的查询响应以外,内存分析还能够减少或消除数据索引,以及将预汇总的数据存储在在线分析处理(OLAP)数据库或汇总表中的需求。据预测,随着商业智能和分析应用采用内存分析,传统的数据仓库可能仅用于支持不活跃或频率较低的查询。
实时分析领域最新动态
大量数据的存储和实时分析能力将不断为企业、学术机构和政府带来机遇,同时也为IT提供商带来了新的市场空间。
目下,以SAP HANA为代表的内存分析技术迅速崛起,而IBM、微软、Oracle、SAS、Teradata等主流数据库、数据分析及数据挖掘厂商,也都已经将内存分析技术做成了标配功能。
日前,英特尔公司宣布推出新一代至强E7 v2 处理器产品家族,除了在处理器和内存方面实现最高系统持续运行时间的高级可靠性、可用性和可维护性(RAS),还将内存容量和 I/O 速度分别比上一代提高3倍和4倍,从芯片级支持企业实现其数据的全部潜力。包括国际的IBM、HP、Dell、EMC,国内的华为、浪潮、宝德、曙光等多家厂商,纷纷在第一时间基于该芯片推出面向实时分析的解决方案,从而帮助企业以更低的成本进行更高效的运营,并更快速地响应客户需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30