大数据时代,为何内存分析技术至关重要
据估计,大数据技术和服务市场的规模预计每年拥有27%的增长,市值将于2017 年达到 324 亿美元。增长的主要驱动力来自于构成物联网(IoT)的联网设备所产生的海量数据。据估计,到2020年联网设备的数量将会增加到 300 亿台。海量的结构化和非结构化数据成为许多企业面临的新现实,而这也使物联网不断为企业业务带来新的挑战。
为从物联网的发展中获益,行业已创建了各种新工具和新技术,以控制和转换多样化的海量数据。与此同时,各种解决方案也不断涌现,其中既有传统的分析解决方案,也有 Apache™ Hadoop* 这样的全新框架。这些新框架提供了内存计算功能,即将数据存储在主内存中,而非传统硬盘中。此类内存数据库和分析解决方案,能够在几秒钟或几分钟内完成复杂多样化的数据集的分析,而无需耗费数小时或数天时间,分析复杂多样化数据集的性能获得显著提升,从而为企业实时地提供重要洞察。
如今,内存分析解决方案可帮助企业在几秒内获得重要洞察和全新信息,从而能够更快做出准确决策,并推出针对客户需求量身定制的产品与服务。这种实时分析多样化海量信息的能力将使企业从大数据中获得丰厚回报。
何为实时分析?
企业很少能够奢侈地花费数天或数月的时间来存储和分析数据。如果,无法及时捕获和分析产生的数据,则将阻碍企业建立竞争优势。但是,如果企业能够及时地发现特定机遇,则将能够创造出数以千万乃至数亿美元的收入。分析工具可为企业提供实时信息,帮助企业客观、深入地了解重要业务现象,并为管理者提供基于事实的信息,帮助其基于事实、而非直觉制定决策。全新内存分析解决方案构建于向上扩展系统之上,如基于英特尔®至强™ 处理器 E7 v2产品家族的系统等。这类系统并不是通过传统的硬盘访问数据,而是在内存中分析数据,从而提供实时洞察。事实上,最近已有示例表明,内存分析解决方案的分析速度最高是基于磁盘的解决方案的 148 倍3。
以下案例展示了实时分析环境对于众多行业的重要性:
金融服务
对于金融服务行业而言,其价值在于即时关联各种载体上的数据,得出有洞察力的结论。例如,在欺诈检测中,金融机构能够实时对比典型的消费金额、购买类型和消费地点,并快速标记出与常规活动不符的消费习惯。此外,金融机构还能够检测常见的具有欺诈嫌疑的消费模式,例如,在进行金额较小的试探性购买之后,立即在珠宝或电子产品商店进行大额消费的行为。
医疗
医疗行业是一个关键业务环境,实时分析对于该环境有着至关重要的意义。例如:
· 重症监护室,其诊断依赖于对从多种显示器和设备中获得的患者数据的近乎即时地分析。
· 药房要求其平台能够根据医疗记录分析就诊患者的数据,确保正确配药并确定合适的剂量。
零售
密切关注产品竞争价格的零售商对于实时分析的益处有着最直接的认识,实时分析将能够帮助他们显著增加销量并提升客户体验。但是,高速分析需要大量数据消耗以及实时的数据处理能力,以完成以下任务:
· 获得产品完整的竞争定价情报
· 根据定价、商品分类和库存制定实时的数据驱动型决策
· 捕获和处理来自各种来源的数据,如定价、社交媒体、市场营销、销售和支持等
· 提高收益、利润和市场份额
为何内存对于实时分析至关重要?
内存分析在计算机的主内存中进行,不处理存储在物理磁盘上的数据,为查询整个数据集提供了一种重要方法。这一方法可以显著缩短查询响应时间,让商业智能(BI)和分析应用能够支持企业更快地做出明智的业务决策。
商业智能和分析应用需要在主内存中长期缓存数据,而具有数以TB计可寻址内存的系统将能够支持在计算机主内存中缓存大量数据,如整个数据仓库或数据集市等。
除提供速度极快的查询响应以外,内存分析还能够减少或消除数据索引,以及将预汇总的数据存储在在线分析处理(OLAP)数据库或汇总表中的需求。据预测,随着商业智能和分析应用采用内存分析,传统的数据仓库可能仅用于支持不活跃或频率较低的查询。
实时分析领域最新动态
大量数据的存储和实时分析能力将不断为企业、学术机构和政府带来机遇,同时也为IT提供商带来了新的市场空间。
目下,以SAP HANA为代表的内存分析技术迅速崛起,而IBM、微软、Oracle、SAS、Teradata等主流数据库、数据分析及数据挖掘厂商,也都已经将内存分析技术做成了标配功能。
日前,英特尔公司宣布推出新一代至强E7 v2 处理器产品家族,除了在处理器和内存方面实现最高系统持续运行时间的高级可靠性、可用性和可维护性(RAS),还将内存容量和 I/O 速度分别比上一代提高3倍和4倍,从芯片级支持企业实现其数据的全部潜力。包括国际的IBM、HP、Dell、EMC,国内的华为、浪潮、宝德、曙光等多家厂商,纷纷在第一时间基于该芯片推出面向实时分析的解决方案,从而帮助企业以更低的成本进行更高效的运营,并更快速地响应客户需求。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13