5点大数据挖掘要注意 学会整理数据和管理客户流量
互联网+大数据已离不开我们的生活,在企业运作中也是同理。要想让企业快速发展起来,学会利用数据是必备基础之一。数据分析师这个职业也因此而诞生了,数据分析师是专门对数据进行有效数据分析。作者是游戏开发平台GameSalad CEO Stephen Nichols,通过分享自己的企业在数据利用上的经验,提醒众多的创业者不能只凭感觉行走,要用数据说话。
不管是多么小型的创业公司,对于数据分析或数据挖掘这块都必须要不断扩大、不断深入。拥有越多的数据来源,有更多的数据可以分析,进而得出更准确完美的结论,最终才能更成功地为特定客户群服务。
我们公司在做自己的数据驱动工作时学到的最大教训是——在建立产品之前先努力做好数据和情报的收集分析,并且,从第一天开始就把高度注意力放到用户上。以下是对待数据需要注意的5个要点,或将有助于你从数据分析或数据中挖掘有价值的信息。
做数据驱动前,先做好对用户的数据收集。不断挑战自己的假设:用户会是谁?你希望他们是谁?虽然可能先是简单地对网站的访客进行调查,例如询问“是什么促使您来到我们的网站?”但这其中也蕴含着你很有可能忽略的重要信息。
"数据分析师"利用有效的工具(如实际用户行为的录像记录)去分析人们从一开始到最终买单的浏览过程是怎么变化的,是什么让他们访问这个页面,而不是其他页面?衡量用户在做什么,并确定哪些关键绩效指标(KPI)需要提高。产品的迭代和用户体验的提升都是让KPI往正确方向前进的因素。
在这里也可以一提很受欢迎的A/B测试(A/B测试是一种新兴的网页优化方法,可以用于增加转化率注册率等网页指标),但我并不依赖于它去做任何决定。它需要消耗大量的流量和耐心去完成统计、验证假设。在大多数情况下,最好选择忽略它,而是专注于KPI以及产品迭代。
在设计产品之初,要考虑用户群体的反馈。通过数据分析工具去分析、设计产品,多维度利用和分析这些数据,可以在以后的改造中节省很多力气。这样一来,初期的产品也可以让你和用户更近,从而观察用户和产品是如何相互影响的,而不是单纯拿一堆调查问题覆盖他们。
在我们公司,对于不同的功能我们会用不同的供应商,包括数据路径、客户支持和市场营销自动化等。Mixpanel(一家数据跟踪和分析公司)有着我 们的所有原生数据,它监控用户流量,进行留存分析,并建立了转化渠道分析。Segment.io(为移动开发者提供便利的分析数据分发服务的公司)可识别 用户,跟踪用户的活动,和路由数据到合适的地址。内部通讯可触发基于事件的消息以及处理自动化留存信息并参与到营销当中。这让我们可以确定用户的喜好,比 如他们是从哪里登录的,是怎么来到这个网页,以及他们将要去哪些网页。我们还使用了自定义路由系统,让数据保持干净,这对于成千上万的用户产生的大量事件 而言是特别重要的。
我们一早就明白快速迭代的真理:宏大繁杂的设计并不可行。通过快速敏捷的模式,我们不但做到从系统上满足业务的日常需求,还腾出时间和精力去思考新的选择、探索更多的可能替代策略。
我们不断地衡量,检讨,改正,以及重复。按月或季度来计划,有助于提高灵活性。我们每天都不停地关注每个部分、每个细节,去发现我们所知道的和不知道的,一步一步解决那些最困难,最重要的问题,然后迭代产品。
在确立最适合业务发展的用户原型时,使用智能的策略避免陷入寻找原型的怪圈中。找出谁在使用你的产品,这看起来很简单,但它也涉及到查找原生数据以 及找出相关性等问题。这些程序和数据包都存在于R和Physon(数据分析主流编程语言)中,它可以帮助你决定需要哪些以及多少用户原型。
从“用户的支持”到“用户的成功”的转变看似简单微小,但对员工的态度以及用户的满意度会产生巨大的影响。“支持”意味着一种负担,是你必须做的事 情。而“成功”意味着分享,是你想要做的事情。“让用户成功”是每个员工的职责,因此他们需要被授予权利去代表客户提出建议,被授权的员工也代表着被授权 的用户。
在过去,我们没有工具可以去了解我们的用户行为。现在我们可以看到他们在点击什么,他们是从哪里登录进来的。这样子我们就可以与每一位用户接触,不 管是通过某种渠道还是为了处理个别问题。既然我们知道了谁在访问我们的网站,那么,我们(数据分析师)也可以通过他们来接触更广泛的人群。更重要的是,我们可以根据这些 数据继续调整产品、满足用户的需求,而不是只靠单纯的假设。
在2016年或往后的时间里,这(数据利用)将会是所有企业的一个基本能力,那些仍沉浸于靠猜测来顺应发展的都将被淘汰。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13