R语言与数据分析:主成分分析
作为数据分析师,有很多刚刚接触数据分析师的朋友,还不怎么了解主成分分析,看看这两篇,你就搞懂主成分分析了。
第一篇:主成份分析历史
Pearson于1901年提出,再由Hotelling(1933)加以发展的一种多变量统计方法。通过析取主成分显出最大的个别差异,也用来削减回归分析和聚类分析中变量的数目,可以使用样本协方差矩阵或相关系数矩阵作为出发点进行分析。
通过对原始变量进行线性组合,得到优化的指标:把原先多个指标的计算降维为少量几个经过优化指标的计算(占去绝大部分份额)
基本思想:设法将原先众多具有一定相关性的指标,重新组合为一组新的互相独立的综合指标,并代替原先的指标。
成分的保留:Kaiser主张(1960)将特征值小于1的成分放弃,只保留特征值大于1的成分。
接下来以小学生基本生理属性为案例分享下R语言的具体实现,分别选取身高(x1)、体重(x2)、胸围(x3)和坐高(x4)。具体如下:
student<- data.frame( x1=c(148,139,160,149,159,142,153,150,151), x2=c(41 ,34 , 49 ,36 ,45 ,31 ,43 ,43,
42), x3=c(72 ,71 , 77 ,67 ,80 ,66 ,76 ,77,77), x4=c(78 ,76 , 86 ,79 ,86 ,76 ,83 ,79 ,80)
) student.pr <- princomp(student,cor=TRUE) summary(student.pr,loadings=TRUE) screeplot(student.pr,type="
lines")
结果如截图:
由上图可见四项指标做分析后,给出了4个成分,他们的重要性分别为:0.887932、0.08231182、0.02393843、0.005817781,累积贡献为:0.887932、0.97024379、
0.99418222 1.000000000各个成分的碎石图也如上,可见成份1和成份2的累积贡献已经达到95%,因此采用这两个成份便可充分解释学生的基本信息。
我们可以通过R自动算出各主成份的值,并画出散点图:
temp<-predict(student.pr)
plot(temp[,1:2])
结果如图:
观察如图可见两个成分的分离度很高,比较理想。
第二篇: 主成分分析(principal component analysis,PCA)是一种降维技术,把多个变量化为能够反映原始变量大部分信息的少数几个主成分。
设X有p个变量,为n*p阶矩阵,即n个样本的p维向量。首先"数据分析师"对X的p个变量寻找正规化线性组合,使它的方差达到最大,这个新的变量称为第一主成分,抽取第一主成分后,第二主成分的抽取方法与第一主成分一样,依次类推,直到各主成分累积方差达到总方差的一定比例。
主成分分析的计算步骤:
假设样本观测数据矩阵为:
X=(x1,x2,x3,…xp),xi为n个样本在第i个属性上的观测值,是一个列向量
1.对原始数据标准化处理(0均值化处理)
2.计算样本相关系数矩阵
3.计算协方差矩阵的特征值和特征向量
4、选择重要的主成分,并写出主成分表达式
5.计算主成分得分
6.根据主成分得分的数据,做进一步的统计分析。
主成分分析可以得到p个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p个主成分,而是根据各个主成分累计贡献率的大小选取前k个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,实际也就是某个特征值占全部特征值总和的比重。贡献率越大,说明该主成分所包含的原始变量的信息越强。主成分个数k的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。
另外,数据分析师在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。一般而言,这个解释"数据分析师"是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的 。
在R里手工统计过程如下:
> #数据集
> y=USArrests
> #相关矩阵
> c=cor(y)
> #特征值
> e=eigen(c)
> e
$values #特征值
[1] 2.4802416 0.9897652 0.3565632 0.1734301
$vectors 特征向量,也就是主成分的表达式
[,1] [,2] [,3] [,4]
[1,] -0.5358995 0.4181809 -0.3412327 0.64922780
[2,] -0.5831836 0.1879856 -0.2681484 -0.74340748
[3,] -0.2781909 -0.8728062 -0.3780158 0.13387773
[4,] -0.5434321 -0.1673186 0.8177779 0.08902432
> # 计算标准化的主成分得分
> scale( as.matrix(y))%*%e$vector
[,1] [,2] [,3] [,4]
Alabama -0.97566045 1.12200121 -0.43980366 0.154696581
Alaska -1.93053788 1.06242692 2.01950027 -0.434175454
Arizona -1.74544285 -0.73845954 0.05423025 -0.826264240
Arkansas 0.13999894 1.10854226 0.11342217 -0.180973554
…..
West Virginia 2.08739306 1.41052627 0.10372163 0.130583080
Wisconsin 2.05881199 -0.60512507 -0.13746933 0.182253407
Wyoming 0.62310061 0.31778662 -0.23824049 -0.164976866
R中下面两个函数可以用做主成分分析
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep(TRUE, nrow(as.matrix(x))), …)
cor =TRUE 是使用相关矩阵求主成分,否则使用协方差矩阵。
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, …)
scale =TRUE 即使用相关矩阵求主成分夬否则使用协方差矩阵
求主成分。
> # prcomp() 的用法
> p=prcomp(USArrests, scale=T)
> p
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494
Rotation:
PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
> summary(p)
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.5749 0.9949 0.59713 0.41645
Proportion of Variance 0.6201 0.2474 0.08914 0.04336
Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
#计算标准化的主成分得分
> predict(p)cda数据分析师培训
结果和手工统计的一样。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20