大数据分析的几个极佳案例
时至今日互联网每天新增的量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数据,那么整个大西洋存储的数据也只能到2010年就满了。
从外行的角度看来是个挺了不起的东西,它也确实了不起,不过有一个前提就是我们数据分析师能够有效地处理数据。怎样从海量数据中找出有用的信息才是最重要的。
本文中我们会讲一些大数据的用例比如分析促销行为、诊断交通状况等。我们还会谈一谈大数据的收集方法以及处理的过程。
网上促销
现在一个公司想取得商业上的成功,在线促销已经成为了很重要的手段。不过如果没有进行实时的那么可以说是干了相当于白干。成功的促销行为应当依据之前收集的数据来决定此次促销所应使用的文案、设计、界面以及针对的人群等。
因为这些数据可以帮助我们理解客户的需求以及市场的动向和机遇。如果想要充分利用这些数据,还需要做到高效地整合数据、打造一个低延迟的分析系统并为分析人员提供一些统计数据直观的图标来进行辅助。
在促销开始之前,我们先要订立一个业绩上的目标。为此我们应该清楚促销针对的客户群和市场。然后将销量和流行度指数这样的业绩目标进行量化。我们可以收集的数据包括销售报表、客户反馈、网站统计等等。
数据分析师从多个数据源进行分析的好处是它能够为未来的发展提供更多的认识,这是单一的销售量所无法比拟的。单纯的销售量无法体现出消费者和环境的变化因此很难作为预测未来的可靠保障。
大数据在促销上的好处可以总结成下面几点:
富有针对性:这意味着钱能够真正地花在刀刃上,所以看似要多投入但其实能够节约开支。
及时反馈:大数据实时分析意味着可以针对市场的变化迅速调整打法。
为以后的市场决策打下基础。
交通疏导
比如你早上有重要会议,结果却被堵在路上不知道什么时候才能到公司,这时你可能除了干着急也没什么能做的。你不能,大数据分析可以。借助大数据分析,、你可以找出拥堵不严重的路甚至通过实时疏导来解决整个城市的拥堵问题。
在这方面做得比较突出的是谷歌地图。谷歌通过收集安卓的位置和运动等信息来预测交通状况并给予用户建议。
不过现在这项服务效果还不是特别好因为谷歌再怎么收集信息也很难知道用户此时使用的是什么交通工具,而开车和骑电动车对于交通的影响是很不一样的。
航班和车队管理
大数据分析在航班管理上可以帮助我们减少花费并节约时间。从每一架飞机或汽车收集的数据燃油消耗、负载、速度、路面状况和航线等。
航班如果计划得不好的话肯定费用会上升,这就意味着赚的钱会变少,这就是物流公司钟情于大数据提升运输效率的原因。数据分析可以帮助物流公司减少空驶的情况并优化行驶的路线。这么一来不光是效率能够提升,对保护环境也能做出一定的贡献。
航班车队管理还能够与交通疏导结合起来为车辆寻找最合适的行车路线,进一步提高效率降低开销。
总结一下大数据分析为航班和车队管理所带来的益处:
实时数据分析可以减少燃油的使用并降低尾气排放。
优化路线减少空驶率。
为车辆提供可视化辅助。
智能新闻聚合
现在已经有很多新闻应用可以根据用户的兴趣来聚合相应的新闻提供给用户。大数据在媒体的生产、归档和聚合上也能够发挥出作用。
单论新闻每天产生的数据量就以PB论而且还在迅速增长。在媒体领域大数据分析的目的是实时地识别、分类、结构化、翻译、分析和管理媒体内容。分析的结果则是为每一个用户单独提供的新闻聚合。
大数据分析为智能新闻聚合带来的益处包括:
高效的信息管理。
提高趋势和数据的即时性。
自动化的搜索和低延迟查询所带来的经济性。
除了这里提到的用例,大数据分析还有无穷的前景留待大家去发掘。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21