关于游戏数据分析师一职位的一些看法,之前少有专门的文章深入介绍,不过在圈子内大家也都会对这一职位有自己的看法,本人并非该领域的资深人士,只不过是这一方向上的践行者而已,公司提供了一个较好的实践平台,加上最近在做这方面人才的招聘工作,感触颇深,因此有了这篇对游戏数据分析师的浅薄看法。
由于我当前是在做手游的数据分析工作,所以只是针对手游而论的,至于端游、页游是不是可以以此类推,我不做解释。在工作中,我比较喜欢用问问题的方式来激发自身的思考、以及推进同事间的业务协作,那么仍然用这种方式来引出我的看法吧。
问题1:游戏数据分析师到底是做什么的?
大家可以在招聘网站上搜一下这个岗位,看下其职责描述,通常这些职责描述都是你未来的直接boss写的,简单总结一下这些boss对其下属的工作期望是:
周期性(如每周/每月等)地总结过去一段时间业务的数据表现,并作出好坏的原因分析,以及可能的未来数据表现与建议。
面向具体的业务场景,协助产品经理或运营经理的工作,提供数据视角的闭合流实施方案,如针对手游运营中的活动效果评估,数据分析师需要推进指标设定、程序埋点、数据集选取、指标统计、结论分析、优化方案的循环过程。
围绕着核心业务,构建指标体系和沉淀数据模型,并以平台化的方式来固化,形成相对长期的软性价值资产,甚至其核心竞争力。
当然这是直接Boss美感的期望,而骨感的现实总是与期望存在偏差,据我所实际了解身边的那些数据分析师大部分主要是做第一部分的工作产出,部分会有第二部分的业务内容,至于第三部分则是少之有少。
问题2:游戏数据分析师的价值是什么?如何衡量呢?
通常,数据分析师不像运营经理直接背产品的收入和用户类的KPI指标的,比如当月度中游戏的活跃用户数稳中有升、收入还超出了预期,那么该运营经理的工作 价值将获得认可。而对于数据分析师,他的价值如何体现呢?不妨将数据分析师提供的服务抽象为产品,那么我们需要界定该产品的用户价值和商业价值;从上面的 职责来看,该产品的用户包括企业的管理者、产品经理、运营经理以及其他任何用到数据分析师提供的直接数据方案的企业内部成员。为用户创造的价值即是为他们 提供好的数据支持服务。
如果你提供的数据服务方案能够很好地支持他们的决策场景、帮助他们准确地做产品定位与快速迭代、推动他们的价值实现,那么你的价值将会别认可。至于如何衡 量,如果一定要直接地量化指标,可以采用最直接的用户满意度(实施成本低);综合过程和结果考评,更合理的是采用间接地产品数据指标(与所支持的的产品挂 钩)+主观的满意度指标(所支持对象的打分)方式。
在与各产品及运营人员的沟通中,听到最多的是:数据分析师主要就是做做报告,而且做的报告高大上,上面都是普适性的东西,对他们的工作没什么用。这不是个 例,应该说是目前我们所面临的通况,出现这种现象的根源和上面讲到的导致大部分数据分析师的实际工作内容与期望有很大偏差的根源是相同的,后面会阐述起原 因。
问题3:为什么要有这个职位?是否必须要设这么个职位?如果非必须,什么情况下才设该岗位呢?如何做出判断呢?
出现专职数据分析师是社会专业化分工、主流产品思想、人性使然以及社会大环境综合的产物。不是必须设这个岗位,视情况而定,以某真实运营团队情况为例说 明,运营经理普遍文科出身,思维很发散,每周策划活动的目标写着拉回流、促消费,活动结束了看看总人数/收入曲线变化了没,仅此而已。在与他们的沟通过程 中,也发现了很多运营人员连数据验证的意识都没有,更不用说数据实施方法了。当然随着大环境的熏陶和趋势地推动,越来越多的设计和决策人员开始期望能够将 数据驱动的思路和方法在其产品中实施,但受限于专业技能方面的障碍,迫切期望专业的数据人员介入。这个时候就该考虑设专职的岗位了。
问题4:怎样才能做好游戏数据分析师工作呢?需要具备什么样的素质和技能?为什么是这些呢?
这里主要列一些个人认为最重要的因素。
逻辑性思考和框架性思考的技能,这也是为什么很多企业招数据分析师时对咨询公司出身的人优先考虑,可以想象一下,如果你基于数据梳理的逻辑是天马行空的,那么你的结论又有多大的说服力呢。
彪悍的协调和沟通能力,与产品、运营、技术等各个团队的协作,很多时候你依赖于他们与你的信息分享和支持才能完成你的数据报告及数据流方案;当然,你的数据分析结论也很大程度上要和他们达成共识才能推进进一步的协作。
上面两项是最为重要的非专业相关的软素质,当然还有很多其他的,通常这些软性技能,很多人都具备,在步入职场前就具备的,而下面的这些素质则是需要进入行业环境下逐步积累和建立起来的。
懂游戏业务,如果你都不知道游戏产品制作流程、不知道游戏产品的系统架构、不知道游戏产品的基本运营思路、不知道游戏玩家的基本游戏行为和情感诉求,你的 数据分析工作就相当于空中建楼,所以多了解游戏策划的游戏设计理念、游戏运营做的版本计划、抓住一切机会多去观察和学习其工作的思路和方法,并参会其具体 的实施过程,这样才能逐步积累真正的游戏业务经验。现实情况中很多游戏数据分析师都没有这样的经历,也就没有相关的经验积累,所以他们大多数的工作产出主 要是一些非产品相关的平台数据分析内容和结论;当然,我相信并非他们不愿意去积累,而是受限于企业中的一些机制,比如大多数游戏数据分析师是base在技 术部门或平台部门,而非具体的产品部门,少有切实深入到业务现场的机会。关于懂游戏业务是做游戏数据分析师的基本要求,这种观点不仅仅在游戏行业,任何其 他行业都是一样,可以看看车品觉写的一些书,会让你更了解其中道理,总结一句话来说“不懂游戏业务的游戏数据分析工作都是耍流氓行为”。
最后特别的一点,保持一颗激情却平常的心很重要。平时在和身边做数据分析(不限于游戏行业)的人沟通时发现,用通俗地话将,相当多的人都觉得自己做的工作 很low,不值一提,少有从眼神或言语中透露出的让人激荡的信心和信念,通常他们会表现出目前所做的实际工作和他们理想中的数据分析师工作不符 ,那么他们理想的数据分析师工作是什么样的呢?“通过大量的数据研究,做出了一个很牛逼的xxx模型,然后用这个模型给业务人员用,基于这模型他们提升了 产品的用户量,提升了收入。。。”,这是很多人心中的想法,也那些直接boss意愿上希望手下的数据分析师产出的成果之一,但是为什么在目前手游行业真实 情况下做得较少呢?大家都知道这是考虑投入产出比后的结果,尤其是考虑到手游行业和产品的自身特点,让那些仍在忧心当前激烈的竞争环境中下一个倒下的会不 会是自己的企业决策者们,怎么会有耐心去做这些可能不会带来价值产出的投入呢。所以郁闷了那些希望用牛x数据模型亮瞎小伙伴的失志数据分析师们。
归根到底,游戏数据分析师在企业中到底如何自处?到底应该如何去创造价值?各家自有看法,每个人所面临的环境千差万别,应该针对实际情况而定,在我当前的业务环境和团队中,我希望做、也正在做、而且坚信会做出价值的事情是:
从最基础的指标定义开始,建立整个业务团队对数据指标的共识理解和应用思路,这是一切数据化驱动的起点。无论是在平时的业务协作中,还是在定期的培训会 中,始终坚持传播统一的数据理解和理念,如基础指标、同比环比值的定义、所适用的应用场景,整体趋势加维度细分的分析思路等。深入参与具体项目运营,针对 我们的常见应用场景,如公测前的渠道测试、如每周运营活动策划、每月的运营版本更新等,形成流程化地的数据流实施方案,在推动平台化的同时,也通过“授之 以鱼”到“授之以渔”来推进我们人人都是数据分析师的理想国度。
结束语:
在保持脚踏实地的同时,不曾放弃仰望星空的梦想,核心源于人的理念,每天问自己下面两个问题:
你真的坚信用数据可以为你们团队创造更多的价值吗?
你真的用尽一起努力去用数据为团队创造更多的价值吗?
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10