数据分析师分析结果什么最主要呢?在这些方面很多数据分析师人员都存着一个误区, 都认为答案是最会主要的,其实不是,经过跟多名数据分析专业沟通,得知一个真理,方法是最主要的,答案是参考性价值比较高。
我在面试数据分析师的时候,必然会问他们一个问题: “假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一
我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一切正常,可以让我踏实下来。你认为,会是哪三个指标呢?”
绝大多数应聘者对这个问题的回答比较一致:第一个是流量;第二个是交易量;第三个是其他,这个其他包括转化率、交易额等。
当他们这样回答完后,我会反问他们:“刚刚我问的问题,你真的听清楚了吗?”这时候,有人会回答:“我听清楚了,答案就是这三个数据。”往往这个时 候,我会提醒应聘者说:“请注意,我要的数据是给CEO看的,而且还是顶级电商的CEO,而且时间轴还是周敏感数据。”面试进行到这一环节,我发现大部分 面试者根本听不懂“CEO”的含义。事实上,既然是CEO,就意味着他是公司里的最高领导层,那么给他看的东西明显要与其他人不同。在这个例子中,我们会 发现绝大多数应聘者很少会换位思考。也就是说,事实上,他们都是从自己的角度来思考,而不是以一个数据分析师、一个要给CEO汇报三个数据指标的分析师的身份来思考问题。
那么,什么是以数据分析师的身份来思考问题呢?通常来说,在我问出问题时,作为数据分析师的你首先要想的是CEO 会关注什么数据,是长期的,还是短期的?是风险最大的,还是风险一般的?或者是最近发生了什么事情?以及给CEO 提供的数据要有什么注意事项,等等。
所以,我要再问问应聘者:“当你坐在面试桌对面给我答案的时候,有没有想过在星期一的早上,这家知名电商的CEO 真正想看的是什么?”再想想这个问题,你到底有没有真正听清楚“CEO”、“知名电商”、“周敏感数据”这些关键词?
CEO 要的是“踏实”——他听完了就可以安心地吃早饭了。
在面试时,如果面试者不对这几个问题进行询问就贸然回答的话,满分是10分,我只会给5 分。因为这个问题里面本身就有很多问题,比如,什么是踏实?踏实是一个概念,你不问清楚“踏实”的含义,就给我三个指标,无论如何都是错的。
在正常情况下,首先不要急于回答我提出的问题,而是先问清楚什么是踏实,切勿自己先做假定。以下,我们可以假定一个相对理想的面试场景。
你反问:“什么是踏实的状况?”
我回答道:“最近这家电商和另一家电商在打价格战,而它最近又新推出了图书类目,那么CEO 自然最关注的是这些图书的业务做得好不好。”
你再问:“什么是好?是否基于每天来买书的新增用户和原有用户购书的数量多少?而且,CEO 是希望更多地用书来吸引新用户,还是想通过图书业务的推广让现有的用户进行交叉购买行为?”
在这些思考结束之前,你绝对不能给出指标。因为,在没有解决一个问题的内涵之前,任意给出的一个指标,必错无疑。所以,我才会问应聘者到底听清楚问题没有。
在我做面试官的经历中,很多看似有经验的数据分析师,往往在我提出的问题还没有解释清楚时就抢着作答。绝大多数人在思考不到一秒钟的时间里就给出了答案,而这一秒钟的答案,我可以确定他们根本没有听清楚我的问题。
通常这个时候,我会再给他们一次机会,问他们:“刚才你给我的这个答案,如果我给你满分10 分,你会给自己打几分?”而此时,大部分人只会打6~7 分。
当应聘者给自己打7 分时,我会反问:“另外3 分丢的原因是什么?”他开始反思,说自己刚才给的可能并不是CEO 想要的指标,因为他对这家电商的近况不是很了解……
接下来,当我再反问:“刚才我的问题是‘假如我是一家知名电商的CEO,
今天是星期一早上9 点钟,你给我三个数据指标向我证明在过去的一周里,企业运营得一切正常’,你听清楚了吗?如果你确认自己清楚了,能请你再给我一次答案吗?”
这时候,聪明的人不会再用一秒钟就给我答案了,而是重新思考,开始问问题,再给出答案。这时候的答案,当然会比第一个答案要好得多。最后,当我再问他:“现在,10 分满分你给自己打多少分?”此时,他们自己给出的分值通常都会高一些。至此,我的面试也就结束了。
事实上,关于这个问题,我根本就不关注打分的结果。当然,如果评价是10分,那就不用面试了,因为在没有仔细考虑过答案的时候就自信满满地回答,这 种人必然无法承担做数据分析师的责任。虽然,自信是对的,但是思考更重要。作为一名数据分析师如果你不把自己的分析与当下结合,是没法进步的。
有趣的是,当我把这个问题贴在网上时,还是会有很多人追问我答案是什么。CEO 关心的到底是哪三个数据。这时候,我真的很想说,数据分析师------答案不重要,方法才是最重要的。(文章来源:网络)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21