数据基础平台层,金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。
这一层的目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(如性别、年龄等)、行为以及兴趣爱好等,以达到全面的了解用户(客户)的目的。要做好有三个关键:1.企业需要确定打通数据的唯一ID,有的企业是用会员注册号,有的是手机号或者身份证号等等。2.跨部门整合数据的问题。有大数据的企业通常部门都比较多,用户(客户)的各种行为和兴趣爱好数据散落在不同部门,需要企业有意识强有力的去整合;3.通过技术手段和规范手段把数据管理起来,这里解决的问题是存在数据仓库里面的数据具体的含义是什么,以及如何高效的存储和计算,涉及到数据接入系统、元数据管理系统和计算任务调度等系统。
业务运营监控层。这一层首要的是搭建业务运营的关键数据体系,在此基础上通过智能化模型开发出来的数据产品,监控关键数据的异动,并可以快速定位数据异动的原因,辅助运营决策,如果企业构建了实时计算的能力,那么很多业务运营中问题就能过及时的发现。
用户/客户体验优化层。这一层面主要是通过数据来监控和优化用户/客户的体验问题。这里面既运用了结构化的数据来监控,也运用非结构化的数据(如文本)来监控体验的问题。前者更多的是应用各种用户(客户)体验监测的模型或者工具来实现,后者更多的是通过监测微博、论坛和企业内部的客户反馈系统的文本来发现负面的口碑,以及时的优化产品或服务。
业务运营监控层和用户/客户体验优化层最终希望实现企业运营的智能化医生。这两层面做出的工具好比是体温计、血压计、B超、CT等工具,我们用这些工具就能快速透视企业运营中那一模块产生问题。
精细化运营和精细化营销层。这层面有四方面事情:1.构建基于用户的数据提取和运营工具。运营和营销人员通过简单的条件配置(如选择男性、18-24岁以及特定兴趣爱好),便可把数据(用户/客户)提取出来,对数据背后的用户/客户进行营销或运营活动;2.通过数据挖掘的手段提升客户对活动的响应(如点击率),常见的算法有决策树、逻辑回归等等;3.通过数据挖掘的手段进行客户生命周期管理。区别于传统的客户生命周期管理,大数据是可做到实时对不同生命周期的客户进行实时标记和预警,并把有效的活动当成商品一样及时的推送给不同生命周期阶段的客户;4.客户个性化推荐。主要是用个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,以实现推广资源效率和效果最大化。
数据辅助市场传播。这一层面要做到通过“性感”的数据分析和挖掘来辅助产品进行传播,主要有两种实现方式:一种是好玩的数据信息图谱,相信大家都不喜欢看产品的公关软文,而更喜欢看好玩的内容。尤其是在网络上传播,10-29岁的网民占所有中国网民的一半多(55%,CNNIC 2013年数据),而这些用户偏年轻、偏“屌丝”,所以这些受众更喜欢“性感”的内容。
淘宝曾经通过统计其购买胸罩C-Cup以上的用户地区分布,发现西安的网民相对比例最多,并发布了这个数据,说西安女生胸部最大,引起不少“屌丝”网民传播。而腾讯在今年3月份则基于8亿多活跃用户首次披露“逃离北上广”数据图,发现11%的用户在春节后逃离了北上广。
数据辅助市场传播的另外一种方式是直接做成数据产品对外使用。比如,百度指数或百度过年期间做的迁徙地图。百度东莞8小时迁徙图的数据中可以看到,离开东莞后,去香港的人最多。那我们是不是可以简单地得到一个信息,从香港去东莞的人最多……
业务经营分析和战略分析层。这两个层面在这里就不多说了,因为这两个层面更多的是跟很多传统的战略分析、经营分析层面的方法论相似,最大的差异是数据来自于大数据。但这里面有两方面需要注意:
1.有很多企业错误的把“业务运营监控层”和“用户/客户体验优化层”做的事情放在经营分析或者战略分析层来做。我认为“业务运营监控层”和“用户/客户体验优化层”更多的是通过机器、算法和数据产品来实现的,“战略分析”、“经营分析”更多的是人来实现。很多企业把机器能做的事情交给了人来做,这样导致发现问题的效率较低。我的建议是,能用机器做的事情尽量用机器来做好“业务运营监控层”和“用户/客户体验优化层”,在此基础上让人来做人类更擅长的经验分析和战略判断;
2. 在变化极快的互联网领域,在业务的战略方向选择上,数据很难预测业务的大发展方向,如果有人说微信这个大方向是通过数据挖掘和分析研究出来,估计产品经理们会笑了。从本质上来说,数据在精细化营销和运营中能起到比较好的作用,但在产品策划、广告创意等创意性的事情上,起到的作用较小。但一旦产品创意出来,就可以通过灰度测试,数据验证效果了。
我认为,如果能利用数据通过机器、算法、或者人工的手段,把现状和问题及原因洞悉的特别清楚已经很不错了,这样决策层就可以基于这些情况进行更好的“拍脑袋”决策了。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20