用R语言进行数据分析:矩阵
在我们做数据分析时,如何用R语言进行数据分析:矩阵,下面就详细说一下,希望对数据分析爱好者有所帮助。
矩阵的创建
在R中用函数matrix()来创建一个矩阵,使用该函数时需要输入必要的参数值。matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,dimnames = NULL)
1. data向量元素列表
2. nrow行数
3. ncol列数
4. byrow 矩阵是按列优先的方式进行排序, 先列后行。byrow项控制排列元素时优先级按行。例如:
1) matrix(c(1,2,3,4,5,6),nrow=2,byrow=T)
5. Dimnames(Row_name,Col_name)给定行和列的名称,如果不需要给行或者列命名,则以NULL代替。例如:给下面的矩阵列命令
2) Demo_1<-matrix(rnorm(15)*10,5,3,dimnames=list(NULL,c(‘A’,’B’,’C’)))
矩阵的运算
1、R矩阵查看矩阵的列/行相关信息
#查看矩阵列名
colnames(Demo_1)
#查看矩阵行名
rownames(Demo_1)
#给矩阵的行命名
rownames(Demo_1)<-c(‘r1′,’r2′,’r3′,’r4′,’r5’)
#矩阵的维度
dim(Demo_1)
#返回与矩阵相同的列与行
row()/col()函数将返回一个与某矩阵有相同维数的矩阵
#返回矩阵行数与列数
nrow()返回行数
ncol()返回列数
2、R的子矩阵
#取矩阵中某个元素值,第二行第三列的值:
Demo_1[2,3]
#取矩阵中的某列,取矩阵的第一列
Demo_1[,1]
#取矩阵中的某行,取矩阵的第一行
Demo_1[1,]
#取某列大于某个值,取第二列大于3
Demo_1[Demo_1[,2]>3,]
3、R矩阵的基本运算
#矩阵加&减
Demo_2=Demo_3=matrix(1:20,nrow=5,ncol=4)
#矩阵相乘
Demo_4= matrix(1:20,nrow=4,ncol=5)
Demo_5=matrix(1:20,nrow=5,ncol=4)
Demo_4%*%Demo_5
4、增加行与列
Demo_6<- matrix(,4,2)
Demo_6[c(1,3),] <- matrix(c(1,2,3,4))
Demo_6
5、R矩阵的转置
t(Demo_1)
6、矩阵其它运算
#取对角元素
diag()
#各行汇总值
rowSums()
#各行的平均值 rowMeans()
#各位的汇总值 colSums()
#各列的平均值
colMeans()
数据分析咨询请扫描二维码
市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09业务分析师(Business Analyst,简称BA)是现代企业中不可或缺的角色。他们不仅是需求分析的专家,更是企业战略规划中的重要参与 ...
2024-11-09银行业正面临着一场全方位的数字化革命,旨在提升服务效率和客户体验,同时优化运营和增收。在这篇文章中,我们通过分析一些成功 ...
2024-11-09数据挖掘技术正在重新定义现代市场营销的方式。对于企业来说,能够深入了解消费者行为、需求和偏好是实现精准市场营销的关键, ...
2024-11-09在当今数据驱动的世界中,数据分析可视化已经成为一种必不可少的技能。它不仅帮助专业的数据分析师更好地传达信息,也使复杂的数 ...
2024-11-09在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08