在Springboard,我们的学生经常问我们这样的问题“数据科学家是做什么?”或者“数据科学家每天的工作是什么样子?”这些问题很棘手。答案因角色和公司不同而不同。
因此,我们咨询了Raj Bandyopadhyay, Springboard数据科学教育主管,看看他是否有一个更好的答案。Raj提供了下图中的框架,它既可以帮助你了解数据科学家的日常工作,也可以帮你理解数据科学解决问题的流程,Raj称之为“数据科学工作流程”。
在解决问题之前,首先要做的是把问题界定清楚,去定义它到底是什么。你必须能够将数据问题转化为可操作的东西。
你经常会从持有问题的人那里得到模糊的描述。你必须培养直觉:通过问一些别人不会问的问题,把这些模糊描述转换成可操作的问题。
假设您正在为公司的销售人员解决问题,你应该了解他们的目标是什么以及数据问题背后真正的本质是什么?在你开始考虑问题之前,你必须与他们合作,明确界定问题。正确地提问是这一步骤的关键。你应该弄清楚销售过程是什么样子,谁是客户。你需要尽可能了解背景知识以便将数据转换为洞察力。为此,你应该问类似下面的问题:
(1)谁是顾客?
(2)他们为什么买我们的产品?
(3)我们如何预测,一个客户是否会买我们的产品?
(4)表现好和差客户细分群体之间的区别在哪里?
(5)如果我们不能把产品卖给目标客户,我们的损失有多大?
在回答你的问题时候,销售人员可能会发现他们想知道为什么产品在部分细分客户群体中的销售不及预期。他们的最终目标可能是确定是否继续投资于这些群体,或是降低它们的优先级。这样你进一步细化了问题,针对细化后的问题发掘答案。在这个阶段的最后,你应该有了所有你需要解决问题的背景知识。
一旦定义好了问题,你需要通过数据来寻找解决方案。这一进程中要想清楚需要什么样的数据?通过什么渠道可以获取这些数据?是要内部数据库数据还是需要购买外部数据?
或许你可能会发现,你要数据都存储在公司的客户关系管理CRM系统中,那么就可以将数据用CSV文件的形式导出。
现在,你有了原始数据,但是还需要为后续的分析做数据预处理。通常情况下,数据都是杂乱无章的,特别是没有很好地存储的情况下。很多东西都可以导致后续分析的错误:null值,重复值和缺失值。对数据的精心核查才能保障从数据中得到有价值的见解。
你要检查以下常见错误:
(1)缺失值,例如客户没有初次接触日期
(2)损坏值,如无效输入项
(3)时区差异,也许你的数据库没有考虑到用户处在不同的时区
(4)日期范围错误,也许你会有没有任何意义日期数据,比如销售开始前的注册数据。
你需要对数据文件的行和列进行统计,并对某些值进行测试,看看它们是不是有意义。如果您发现没有意义,你需要删除数据,或者使用默认值替换它。这里,你需要利用你直觉:如果客户没有初次接触日期,是否就真没有初次接触日期?或者你可以询问销售人员,是否是把初次接触日期的数据弄丢了?一旦你完成数据清理工作,你就可以开始准备探索性数据分析。
当你的数据是干净的,你就应该开始使用它!这里的困难在于如何对真正有见解的想法进行测试。你必须为数据科学项目设定最后期限(销售人员可能正等待的分析),所以你必须对问题进行优先级划分。“你必须先看看最有趣的模式:帮助解释为什么某些客户群体的销量减少了。您可能会注意到,他们在社交媒体上不是非常活跃,只有少数人有Twitter或Facebook帐户。您可能还注意到,其中大部分人的年龄偏大,你可以开始跟踪这些模式进行更深入分析。
这一步你要应用统计学、数学和数据科学工具,围绕有趣的模型进行详细分析。
在这种情况下,你可能需要创建预测模型比较业绩不佳组客户与客户平均。你可能会发现,年龄和社交媒体活跃度是影响购买产品的显著因素。
如果你在问题界定阶段就已经了解了很多背景信息,你可能会意识到该公司营销活动集中在社交媒体上与年轻受众进行互动。但是某些客户却喜欢电话的交流,而不是社交媒体。你开始看到该产品的营销方式对销售的影响,也许那部分客户是不应该流失的群体。公司应该从过分依赖社会化媒体营销策略向更加个性化的策略转变。
现在,您可以将所有数据定量分析得到的定性见解,通过讲故事的方式说服相关人员采取行动。
让销售人员理解你们的发现很重要。沟通交流的有效性决定了你的方案是否被采纳。
你应该撰写一个有令人信服的故事,将自己的知识与数据恰当嵌入其中。你可以从解释老年人中销售业绩不佳背后的原因开始;你可以巧妙地将销售人员给你信息和数据中发现见解结合起来;然后你转到解决问题的具体办法:可以将部分资源从社会化媒体转移到私人电话推销中。
了解以上步骤,对于系统思考数据科学有极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22