【干货】数据分析VS业务分析需求
在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者等待业务需求,然后数据分析来实现,得出分析结论提供给业务使用。所以这当中需要多深业务功底才能做好分析,把分析价值呈现给业务,让他们用起来,这是一个难题,但也是企业最想解决的难题。
这里把引导放第一位,因为分析需求往往都是零散的、针对具体某一个问题的,所以如果要有系统化的、全面的分析需求,需要从BI角度进行一个分析总揽,既起到抛砖引玉的作用,同时也起到系统性引导业务分析的作用,使得BI与业务一线需求更为紧密。
所谓吃透分析需求,就是对用户的需求进行深入理解,一方面是看需求是否合理,二是自身对业务的学习、理解过程,三是对需求的全面思考。
案例一,由系统性分析框架,与业务需求一起完善BI,并用之产生足够价值。
大家都知道电商活动分析与日常运营分析差别比较大,故活动分析需要独立的分析框架专门服务每次的活动,达到市场目标达到或超过,且客户体验更高、运营成本更低的目的。
当BI人把活动分析框架搭建起来后,无论从商品供应链需求预测、客户细分准备精确营销、市场预测、流量/订单近实时监控等看似比较完美的分析服务体系建立起来后,与业务部门一碰撞,发现还是不能完全满足需求。例如财务部门可能要求监控同一天同一款商品不同价格的问题,因为有的时候,客户不同路径点击商品价格会不同。所以永远不要忽视一线部门对于业务需求的多样性,这些都是需要和业务部门充分交流互补有无的时候。
正常情况下,只要BI人能充分说明理由,业务部门不可能看着业务利益不去做的,除非BI人没有了解到业务执行的困难而妄自假想的方案。例如不同类型的活动,其商品销售分布规律是不同的,有的是3-7,2-8效应,有的甚至1-9效应,这些根据历史经验作为统计分析参数,意味着供应链预测的时候,活动商品根据销售目标准备的库存要达到足够的数量才行。
案例二,业务过来的需求,如何做得更好,让每一个分析都能真正发挥价值作用?BI不能成为IT开发者,你来需求我开发、我取数、分析,至于数据用的咋样,是否产生价值,是你自己的事。这种合作方式正在全面改进,BI价值泡沫正在回归真金白银的价值理念。所以对于业务提出的需求,要刨根问底,直到它真的对业务有帮助。
有朋友说,业务部门可能说,你别管,取数、统计就行了。其实这是可以改变的,因为业务部门也喜欢能做的更好,只要你懂业务,甚至比他们更有见地,别人为啥不听听你的建议呢?
在以前的甲方公司早期做BI的时候,当时业务解析能力还没那么牛,报表和数据分析体系还正在建立中,但也学习不少业务知识,需要逐步与业务磨合的时候,财务部门来了一个统计需求,结果一看,是一张上百个字段的超大报表,而且很明细,统计出来上万行,放EXCLE没法看。于是我问对方到底用这个表来干嘛呢?对方说不清楚,高层领导要的,想要看各省主要品类的销售情况,但不知道怎么看,估先这样都把数拿出来看吧。
我问领导用来干什么,或者什么场合用呢?对方说销售会议。我说这样吧,明细数据我给你,我再帮你统计一些图表,这样会议看数据会看得更轻松更清洗。销售会议,常常会自身同比,以及不同省份的增长对比,所以根据这个特点,我做了针对性统计。 后来反馈会议看数据确实更轻松,对会议有帮助,所以销售总监还想看库存与销售对比,看哪些地方抢了货却销售不出去的现象,但已经很大的补充作用了。
当数据分析走出业务分析的第一步,那么下一步,数据分析对决策有帮助、推动,甚至影响,就有了可能,我倡导的BI做为企业智囊团,谋士,就更进了一步。
数据分析要深入业务,需要做以下事情:
1。先虚心学习基础业务知识
2。建立分析体系,不完整的地方,有业务帮忙补充,BI的业务知识更为全面
3。了解业务的决策、执行困难,对实用性业务经验积累有巨大帮助
4。面对业务需求时,多想为什么,业务可能怎用这个统计或分析,他们拿着这些数据真的有用么?
OK,通过以上历练,你已经走过数据分析通往业务分析的桥梁,可以往战略战术性分析、计算、预测更进一步了,这样你的BI不但是“工具”,你做为BI人还可以做为谋士,成为决策、智能执行的推动或补充者,把事情做得更好。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10