社交媒体数据挖掘:尚未开发的潜力
《社交网站的数据挖掘与分析》一书的作者Matthew Russell指出,尽管针对社交媒体数据挖掘的讨论非常多,但真正采取行动的只占少数。针对数据挖掘感知的困难是阻碍社交媒体数据挖掘的一大原因,而Russell认为这样的想法是不对的。拿Twitter来举例,使用熟悉的编程语言Python来对Twitter社交媒体数据进行挖掘并不需要太高级的开发者或数据科学家技能。
对社交媒体数据进行挖掘能够帮助企业获得关键信息,提出API请求,分析销售数据能够让企业使用其中的洞察来驱动进一步的创新。本文中,Russell将为开发者介绍一些关于社交媒体数据挖掘的经验。
在首次进行社交数据挖掘时,Russell建议使用Python语言,因为其语法更加简单,数据结构能够与文本数据兼容。大多数社交媒体实体会以JSON(JavaScript Object Notation)的格式返回数据,它是一个灵活直观、基于文本的数据格式,经常应用于Web环境以便通过网络进行简单或者复杂数据结构之间的通信。Python的核心数据结构与JSON非常相似,因此在处理社交媒体数据的时候不存在门槛问题,开发者可以非常简单地创建请求。
每一个社交网络媒介都会为数据挖掘提供一个价值主张,但Russell认为Twitter是最佳的切入点。这与国内的微博平台相类似,它们都有简单且不对称的“加关注”模式,同时有海量的活跃用户基础(Twitter每月的活跃用户数量大概在2.32亿),这对于数据挖掘来说几乎是完美的条件。Russell将这样的应用比喻成繁忙的街道,每个街角都会有人在聊天,在这些人当中总会有一些有用的信号可以梳理出来。
从开发者的角度来看,Twitter特别适合进行数据挖掘(微博与其有很多相似之处),主要由于以下三个原因:
Twitter的API设计优良,访问简单
Twitter数据格式非常方便进行分析
Twitter的数据使用条款相对宽松。他们认为每一条tweet都是可以公开的,任何人都可以访问。另外不对称的关注模型使得你可以访问任何一个注册用户,而无需他通过你的关注请求。
Russell表示,Twitter的易用性加上海量的活跃用户,使得它蕴含了难以估量的价值。然而这些潜在的价值没有得到充分的挖掘,公司管理者以及开发人员也没用把握住社交趋势给他们带来的机遇。
目前Twitter的数据几乎全都用于声誉管理、品牌推广以及舆情分析,换句话说就是用于广告。Russell认为,随着社会化研究的逐渐深入,当你每月有2亿多活跃用户(每天的活跃用户占比更大)的时候,其实除了广告之外它还隐藏了许多其他的机会。
Russell将Twitter形容为一张兴趣图谱,或者说是一幅兴趣肖像画,它展示了个人以及小团体的兴趣所在。对于小规模群体来说,兴趣图谱可以用来预测购买行为;对于大规模群体来说,它可以用来分析社会化趋势。如果你把“加关注”的关系理解为“我对他有兴趣”的关系(事实上也的确如此),你就拥有了某种非常强大的数据聚合。当兴趣图谱运用到海量规模群体时,它潜在的有价值的洞察力就超越广告本身了。对如此体量的数据进行挖掘,它可能并不会带来直接的购买行为,但它能帮助企业理解市场的走向,特别是一些特定领域市场。目前就有一些对冲基金是在Twitter数据分析基础上设计交易模型的,这可以帮助他们做更智慧的投资。
在Russell看来,Twitter的API价值也不容忽视。API是第三方接入Twitter平台的初始点,也是创新的前提。世界上很多聪明的人会比Twitter公司本身有更多好的点子,Twitter提供的API给了他们更多机会。虽然API的数量足够多,但事实上它也没有得到充分的利用。从一个人起家的创业公司到拥有诸多开发人员的大型企业,每个人都可以利用这些资源或使用第三方的产品来进行创新。
无论是对个人还是对群体,Twitter自我组织、快速增长的数据池为我们提供了关于趋势和兴趣的直接洞察力,但它尚未完全捕获开发人员的想象力。而社交媒体数据挖掘所带来的价值,Twitter只不过是冰山一角。Russell希望企业能够开始把广告作为达到某种目的的手段,他们能够在社交媒体数据创新中发现真正的价值所在。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21