数据挖掘的六大步骤
数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。
此过程包括以下六个基本步骤:
1. 定义问题
2. 准备数据
3. 浏览数据
4. 生成模型
5. 浏览和验证模型
6. 部署和更新模型
该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。 这些任务转换为下列问题:
·您在查找什么? 您要尝试找到什么类型的关系?
·您要尝试解决的问题是否反映了业务策略或流程?
·您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联?
·您要尝试预测哪个结果或属性?
·您具有什么类型的数据以及每列中包含什么类型的信息? 或者如果有多个表,则表如何关联? 您是否需要执行任何清除、聚合或处理以使数据可用?
·数据如何分布? 数据是否具有季节性性质? 数据是否可以准确反映业务流程?
若要回答这些问题,可能必须进行数据可用性研究,必须调查业务用户对可用数据的需求。 如果数据不支持用户的需求,则还必须重新定义项目。
此外,还需要考虑如何将模型结果纳入用于度量业务进度的关键绩效指标 (KPI)。
2、准备数据
数据可以分散在公司的各个部门并以不同的格式存储,或者可能包含错误项或缺少项之类的不一致性。 例如,数据可能显示客户在产品推向市场之前购买该产品,或者客户在距离她家 2,000 英里的商店定期购物。
数据清除不仅仅是删除错误数据或插入缺失值,还包括查找数据中的隐含相关性、标识最准确的数据源并确定哪些列最适合用于分析。 例如,应当使用发货日期还是订购日期? 最佳销售影响因素是数量、总价格,还是打折价格? 不完整数据、错误数据和输入看似独立,但实际上都有很强的关联性,它们可以以意想不到的方式影响模型的结果。
3、浏览数据
浏览技术包括计算最小值和最大值,计算平均偏差和标准偏差,以及查看数据的分布。 例如,通过查看最大值、最小值和平均值,您可以确定数据并不能代表客户或业务流程,因此您必须获取更多均衡数据或查看您的预期结果所依据的假定。 标准偏差和其他分发值可以提供有关结果的稳定性和准确性的有用信息。 大型标准偏差可以指示添加更多数据可以帮助改进模型。 与标准分发偏差很大的数据可能已被扭曲,抑或准确反映了现实问题,但很难使模型适合数据。
4、生成模型
通过创建挖掘结构定义要使用的数据列。 将挖掘结构链接到数据源,但只有对挖掘结构进行处理后,该结构才会实际包含数据。
5、浏览和验证模型
在将模型部署到生产环境之前,您需要测试模型的性能。 此外,在生成模型时,您通常需要使用不同配置创建多个模型,并对所有这些模型进行测试,以便查看哪个模型为您的问题和数据生成最佳结果。
6、部署和更新模型
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10