数据如何指导产品设计
两年之前,那时我刚开始做产品,当需要做数据分析时,我总是一头雾水,完全不知道该如何下手。我想做好,我真的非常想做好,可我却真的不知道该怎么做。经过这两年大大小小项目的不断锤炼,摸索、尝试、碰壁、复盘、再尝试,终于能够根据数据分析的结果,做出成功的产品设计,最终呈现出良好的结果。现在呢,每天到公司第一件事就是看数据,对昨天各平台的流量、各页面的转化、各品类各入口各目的地的销量,心中有数。从数据中发现问题,进行进一步的分析,及时调整优化。
我在网上曾不断的找有关“数据如何指导产品设计”的文章,一直没有找到有含金量的东西,所以,我决定自己写一篇,把自己认为有价值且能迅速用于实战的东西分享出来:
以“手机淘宝”App为例,打开淘宝App,选择阿里旅行:
由于我是一直做旅游产品的缘故,所以还是拿旅游App做为案例。通过对这个App的观察,可以把影响数据的因素概括如下:
好了,先说明一下:
1、数据分析的过程:
2、先把因素罗列出来是为了方便大家理解。在实际工作中,遇到一个数据呈现出来的问题,你自然而然就能联想到由哪些因素造成的,然后去查询分析相应的数据,找出具体原因。
3、电商类产品普遍以GMV为目标(不要说为什么不是用户体验,电商类和其他类产品在这点真的很不一样)。
4、大中型公司普遍都有自己的数据平台及相应的数据团队。每天早上看数据也是产品经理的日常工作。小型公司的话,建议自学SQL,自己在数据库中查询数据。其实我在去哪儿网也自学了SQL,因为这样更方便。先在我们的数据平台上看数据,发现异常,就自己在SQL里查询更详细的数据。不用去麻烦数据团队,因为大家手里的活都挺多的,自己查的话效率还更高。
5、 日常需要分析的数据纬度有:页面转化;商户/商品;用户纬度;市场环境;渠道推广;客诉纬度;财务纬度
6、数据分析的利器是Execl,重点要学会用“数据透视图”,这会对你的工作帮助极大。(以后我会专门写一个关于数据透视图的文章)
7、推荐看《谁说菜鸟不会数据分析》,这算是数据分析的入门书了。
案例一:产品第一版本上线后,发现首页向下转化率极低,才25%。需要紧急提高首页的转化率。
思考过程:先查询首页每一个入口的向下转化率。发现数据集中在首页的“搜索”模块,而其他模块,比如“热销低价商品推荐”,点击率都极低。基于对我们产品业务的了解来进行分析,我们产品属于旅游环节中的中下流。用户到我们的界面上来时,基本已选好目的地了。那么他们主要就使用搜索来查询他们想要的目的地,然后再筛选他们感兴趣的旅游商品。而“热销低价产品推荐”由于只命中了单一目的地,且商品不一定是用户感兴趣的,它击中用户需求的几率较低,所以点击率极低。
解决方案:1)、在首页增加了更多热门目的地的入口,并且设计了一个成本极低“运营管理后台”,对目的地进行人工运营配置。2)、把商品分类提到首页,方便用户选择目的地时同时选择商品类型,进行更精准的搜索,同时让用户在首页了解到我们有哪些类型的商品。3)、删除了“热销低价商品推荐”模块,增加了“主题游”作为尝试
后评估:最终首页向下转化率提高至68%。措施1提高了约25%的转化率(每两周查询一遍所有目的地的点击数据,把点击率低的目的地更换为近期较热门的目的,反复替换,最终达到较高的点击率为止。);措施2提高了约10%的转化率;措施3提高了约8%的转化率
案例二:发现某一个渠道带来的流量的转化率极高,从进来的流量到下单付款,转化率能有约10%,而我们一般的转化率才2%~3%。
思考过程:分析这个渠道的流量质量,发现与其他渠道差别不大,都是对旅游有需求的普通用户,且各自的商品类型都差别不大。然后横向对比所有渠道的流量、转化率、设计、所在位置、用户在此处的需求,发现主要原因是这个渠道入口的“设计”与别的渠道不同,这一种设计形式带来的转化率要明显高于其他的设计形式。
解决方案:根据实际情况,把这种设计移植到其他渠道
后评估:此平台(web端)的订单提高了约15%
案例三:在参与一个独立App时,发现一个功能的入口点击率很高(90%),但使用率不高(60%)
思考过程:查询与之相关的数据,从入口进来的用户流量都分布在什么位置,然后发现用户进来后都集中在新手引导上,反复的左右翻看新手引导(滑动操作的数据是UV的4倍),且停留时长能有20多秒,发现用户的注意力都集中到了新手引导上面。
解决方案:在新手引导的最后一页,增加一个“使用功能”的按钮
后评估:此功能的使用率从60%提高到了80%
案例四:公司攻略部门愿意与我们导流量的合作
思考过程:攻略每天有10万多UV,若能给我们的商品导流量,一定会促进我们商品的销售。我们平台(Web端)每天才6000的UV,若能有10万级的流量入口,对我们商品销售的帮助一定是极大的。然后考虑到数据越是在下游,就越精准,转化率也就越高。
解决方案:在搜索结果页、攻略详情页,增加相应目的地的我们商品的入口。推荐每个目的地销量最好的商品。保证用户在攻略的界面看到的会是他们需要的商品。
后评估:上线一周后评估,一周仅成一个订单,远远没有达到预期的一天至少5个订单。后来经过与攻略产品经理的沟通,分析,发现主要原因是攻略的用户主要是出行前15天至两个月的用户,属于旅行前期的规划阶段,看攻略是为了选择去哪里玩,而去哪儿玩都没有确定,怎么会在此时就购买旅游商品呢?而我们的用户普遍集中在出行前的三天至七天,是用户确定了目的地、机票酒店都已经订好了。才会在我们这里提前3~7天预订出境WiFi、包车、导游翻译...
最后,数据分析是需要不断的实践总结,成功都是靠失败的经验教训堆积而成的。在这个过程中,除了学习产品设计、数据分析的方法以外,更重要的是:了解业务,沉浸到业务当中去,成为自己业务的骨灰用户,知晓业务的方方面面,产品经理一定要做到比团队中的任何人都更了解业务!这样才能够做出成功的产品设计。
我的初衷是希望你看了之后能够有所收获,能够对你的工作和专业水平的提高,有那怕一点点的帮助。不然我就白写了 。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20