大数据VS心理学:大数据将革新心理学
什么是心理学?
依照百度百科的描述,心理学是一门研究人类的心理现象、精神功能和行为的科学。心理学研究涉及知觉、认知、情绪、人格、行为、人际关系、社会关系等许多领域,也与日常生活的许多领域——家庭、教育、健康、社会等发生关联。
心理学一方面尝试用大脑运作来解释个体基本的行为与心理机能;同时,心理学也尝试解释个体心理机能在社会行为与社会动力中的角色;而且,它也与神经科学、医学、生物学等科学有关,因为这些科学所探讨的生理作用会影响个体的心智。
心理学包括基础心理学与应用心理学两大领域。心理学家从事基础研究的目的是描述、解释、预测和影响行为。应用心理学家还有第五个目的——提高人类生活的质量。这些目标构成了心理学事业的基础。
依照传统的方法,心理学数据分析依靠的是样本,而心理学样本基本上是小样本,样本可以是几百人,或者多达5000人,但终究还是样本,这离理论上的样本数目还是相差甚远,其分析结果依然被认为不够准确,需要不断地对模型进行学习和训练来提高所谓的准确度。所以,可以这么说,心理学由于其的特点,限制了心理学科的发展。
大数据时代的来临
如今人工智能和计算机科学的大力发展让认知研究发生了革命性的变化。很多的数据已经不需要心理学家们去刻意采集,人们在互联网的世界里,自觉自愿或者无意识地提供一种真实、准确、及时的数据,这就是社会媒体的数据,这个数据就是大数据。
在一些大型的互联网公司手中,就有很多这种准确记录了用户行为的大数据资料。在大数据时代,有人可以做到比你自己更了解你自己。大数据已经对我们的社会科学、人文科学会产生很大的影响。
什么是大数据?
大数据是一个含义广泛的术语,是指面对的数据集是如此的庞大而复杂,需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿字节或EB字节的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章,可能是线性的,但更多的是非线性的。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式、相关性和其他有用的信息,它可以帮助公司政府等更好地适应变化,并做出更明智的决策。
这就是,人们通常用4个V(即Volume、Variety、Value、Velocity)来描述大数据的特征:数据体量巨大(Volume); 数据类型繁多(Variety,结构化数据和非结构化数据);价值密度低(Value) ;处理速度要求快(Velocity,在巨大的数据量面前,对处理速度的要求就显得“大”)。
什么是数据挖掘?
数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识,然后人们在数据挖掘的基础上再进行明确目标的数据分析。
数据挖掘中最经典算法就是PageRank。 PageRank是Google背后最重要的算法, 他是Google创始人之一拉里•佩奇(Larry Page)提出,并且在2001年9月被授予美国专利。PageRank里的page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是指佩奇(Larry Page),即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量,衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多,也意味着PageRank越高。PageRank其级别从0到10级,10级为满分。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10。
大数据与心理学的结合
当然,任何手段都不是万能的。 “大数据”也有其不擅长的方面,
首先,数据不懂社交。大脑在计算方面很差劲(不信你可以心算一下678的平方是多少),但是大脑懂得社会认知。人们擅长反射彼此的情绪状态,擅长侦测出不合作的行为,擅长用情绪为事物赋予价值。
计算机擅长计算“量”而非“质”。计算机可以计算出你在83%的时间里与6名同事的社交互动情况,但是他们不可能捕捉到你心底对于那些多年未见的童年玩伴的感情,更不必说贾宝玉对于仅有三面之缘的史湘云的感情了。因此,在社交关系的决策中,不要愚蠢到放弃自己的感觉和思考,而去相信你桌子上的那台笔记本。
而且,数据偏爱潮流,忽视杰作。当大量个体对某种文化产品迅速产生兴趣时,数据分析可以敏锐地侦测到这种趋势。但是,一些重要的(也是有收益的)特性有可能在一开始就被数据摈弃了,仅仅因为它们的特异之处不为人所熟知。
大数据就像金庸笔下的侠客,武功高强,出神入化,万夫莫敌,但容易剑走偏锋,走火入魔。这是引入大数据推进心理学研究,一定要注意的。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21