大数据营销要学会做减法
在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点,进行针对性的计算。
营销为什么可以被颠覆?营销作为一门专门被提出、研究的学科,不过百余年的历史,却走过了之前三个阶段。第一个阶段,也就是所谓的1.0时代,即供需完全脱节,企业无法获知消费者的需求,能否成功只能靠运气;第二个阶段(2.0时代),企业开始致力于专业的差异化,开始从整体上分析把握市场、客户的需求;第三个阶段(3.0阶段),社会责任传播、品牌管理被引入营销体系,企业更多地根据部分特定的消费群体拟定产品和营销策略。
很多企业对于营销的理解,迄今仍然停留在以上所述的第二个或第三个阶段。当然,相比第一个阶段,基于差异化的营销、品牌营销、社会责任营销,都意味着营销的科学化,可以非常有效地帮助企业避开危机、迎来挑战。
尽管如此,也要看到,营销的科学化仅仅是部分的、相对的,总体上,怎么做营销,经验多流于感性化,预估、预判很难上升为真正意义上的预测。大数据时代的到来,为营销从主要靠“猜”和“蒙”,转型为精准研究及应用创造了条件。大数据依托海量的实时和历史数据,运用强大的数据分析,挖掘消费者个人化需求以及潜在需求,找出产品预测,找到精准目标顾客,进行一对一营销,甚至还可以精算出成交转换率。
营销被颠覆及超越,随之而来是更高水准的新营销。在过去,实体的百货零售业,营销战从早打到晚,在品牌大战、促销大战之前,商家和品牌商需要筹备很长时间,但究竟能够换得什么样的效果,营销人员很难做到心中有数。
而在大数据时代的背景下,营销战事实上很接近于小说、影视中的“穿越”题材,从“未来”回到现在,也就是说借助于大数据,从顾客的真实交易行为数据中,计算出不同顾客的下次购买时间、购买方向、关注重点(品牌、价格、折扣、不同品类商品的组合),进行针对性的计算。大数据让人变得更聪明,营销者可以掌握更多、更为真实和实时的数据,但这并不意味着思考的难度就下降了——相反,一些营销者过去依靠不对称的信息优势、关系优势获得的成功,而今随着信息的海量化和非壁垒化(透明化)、社交网络的发展而受到挑战,营销者需要根据更多信息在更短的时间内完成更多决策。
这也意味着,大数据营销的真正挑战,其实在于如何做对决策。功典(亚洲大数据决策营销的领导品牌)首席执行官、香港海归创业家陈杰豪所著的《颠覆营销》一书,不仅是一本旨在颠覆传统营销观念和方法的作品,而且还努力纠正因为大数据流行而在企业家阶层中普遍形成的“大数据万能论”等错误认知。作者指出,大数据的应用原则其实不难掌握,难就难在如何诠释数据:诠释依赖人的观察、对核心know-how的理解与经验法则。
经验在大数据时代依然显得十分重要,构成解读数据、确定数据功效的基础。我们所说的营销4.0,既要求达成大数据基础上的精益思考,又要求实时化决策,这必然需要启动降维减法思考。书中为此提出了一个获利公式,营收等于有效顾客数、顾客活跃度、客单价的相乘,这其中涉及到新增率、变动率、流失率、转化率、活跃度、瞌睡顾客唤醒率、半睡顾客唤醒率、新顾客客单价、主力顾客客单价。
作者有关大数据需要做减法的观点,对于中国企业界及创客群体具有重点意义。大数据不意味着要利用所有可以掌握和挖掘的数据,而应当分清重要数据和干扰变项,有目标和策略地搜集必要的关键数据,依循既定的商业逻辑。
相比传统的营销4P理论(产品product、价格price、渠道place、促销promotion),大数据下的营销4P,则由消费者、成效、步骤、预测(均为P开头的英文单词)组成。围绕这四个节点,再确立出相应的模型及指标,增强对变动性、异质性销售过程的把握能力。这种转变,很好地适应了大数据时代的产销模式,即变“先产后销”为“有销才有产”,供需关系紧密连接,几乎不存在成本浪费和库存,靠“猜”的营销也因此变成了超精准营销。
本书作者指出,以消费者为中心的新营销模式,要抓住每个消费者不同的生活情境,根据位置信息、搜索记录、线下购买行为,不断提高对消费者品牌印象、购买意图的认识。为了达成这方面目标,要精准把握关键数据,要从顾客姓名、联系地址等背景档案信息,交易数据等动态数据,与交易商品相关的价格、口碑数据等商品特性数据中找出关键点。
要驾驭大数据营销,企业仍需摆脱好高骛远的心态和不切实际的目标,首先致力于做好基础工作,比如内部部门的数据称谓统一、工作流程及其运行逻辑的统一,构建基于企业利益最大化的共同愿景,推动数据整合计划。书作者结合多个行业企业的数字化转型经验,就不同行业、规模、数字化起点的企业启动大数据营销特别是关键数据挖掘分析能力,提供了具体可行的建议。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13