你的大数据分析为何让你失望
许多企业投下数百万美元用于大数据、分析法,并雇用数据分析师,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人对业务的想法和争论,似乎与过去的类型仍一样,只是他们使用的数据与分析法都比以前好得多。最终的决定可能是更加由数据驱动(data-driven),但组织文化给人的感觉仍然相同。正如一位CIO最近告诉我的,“我们现在可以做实时的分析,那是我在五年前根本无法想象的,但这么所带来的影响力,仍与我的预期差距很远。”
怎么回事?我曾协助《财富》杂志1000大企业举办了几场大数据与分析法会议,并花费大量时间协助一些似乎对投资在分析法上的回报感到很满意的组织,结果一个明确的“数据启发法”(data heuristic)出现了。分析成果为平庸到中等的企业,用大数据和分析法来支持决策;而“分析报酬率”(Return on Analytics,简称ROA)良好的企业,使用大数据和分析法来推动并维持行为的改变。较好的数据驱动分析不仅仅是纳入既有的流程和检讨会,它们还被用来创造及鼓励不同类型的对话和互动。
“要等到管理阶层确认想要改变、并清楚知道影响的行为是什么之后,我们才会去做分析或商业情报的工作,”一位金融服务公司的CIO说。“提高合乎法规的情况和改善财务报告,是很容易获得的成果。但是,这只意味着我们使用分析法去做我们已经做得比以前好的事情。”
真正的挑战是洞察,利用大数据和分析法,以改善解决问题和决策的方式,会掩盖组织里一个现实情况,那就是新的分析法往往需要新的行为。公司人员可能需要作更多分享和协力合作;各部门可能需要设置不同的或互补的业务流程;经理人和高级主管可能需要确保,现有的激励措施不会破坏分析带来的成长机会和效率。
例如,一家医疗用品供货商整合有关“能带来最多利润的客户”和“最赚钱产品”的分析,必须对业务人员与技术支持团队进行完整的再教育,两者都是为了“打扰” 并“教育”客户有关附加价值较高的产品。这家公司了解,这些分析法不应该只是被用来支持现有的销售和服务实务,而应该被视为一种契机,可推动新型的促进式(facilitative)和顾问式(consultative)销售及支持组织。
讽刺的是,大数据和分析法的质量,不如分析的目的来得重要。最有趣的紧张态势和争论,始终围绕着组织是否会因使用分析法而获得最大报酬,以使既有的流程行为(process behavior)更完善,或者改变公司人员的行为。但大致的共识是,最有成效的对话聚焦于分析如何改变行为,而非解决问题。
“我们组织内的大多数人,历史课的表现优于数学课,”一位消费性产品分析主管告诉我。“要让公司人员了解新信息和指标可能会如何改变他们的做事方式,是比较容易的,要让他们了解根本的算法则比较困难……我们好不容易才学到,‘翻墙’(over-the-wall)数据和分析法,不是让我们的内部客户从工作中获得价值的好办法。”
得到正确的答案,甚至是问正确的问题,原来不是拥有高ROA企业的主要关切点。无可否认,数据与分析法的问题、答案,都是重要的。但更重要的是,这些问题、答案及分析法,如何与个人与机构的行为协调一致(或彼此冲突)。有时候,即使是最好的分析法也可能引发适得其反的行为。因此,不要辜负了你的分析法。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22