数据分析应从数据积累做起
“不会酿酒,也能成为好的品酒师。”在IBM数据分析沙龙中,AsiaAnalytics首席执行官莫利伟通过品酒师的事例,说明企业应该如何正确进行数据分析,为大数据的应用作准备。作为一个企业的管理者,并不需要成为数据分析的天才或科学家,但需要将自己站在一个消费者的立场,体验、并理解数据分析带来的作用,从而更好地利用数据分析,实现最佳的收益。
以上来自于8月23日的IBM数据分析沙龙中。IBM软件部智慧商务技术总监杨旭青先生和AsiaAnalytics首席执行官莫利伟Olivier Maugain先生从IBM智慧商务、数据分析及大数据等方面,与记者一起分享目前企业数据分析的策略及重点方向。
对于大数据,IBM软件部智慧商务技术总监杨旭青先生首先从IBM软件部门中智慧商务的业务,带来IBM的观点。在IBM的智慧商务就是利用“大数据”进行分析、处理数据,形成一个完整的价值链,包括企业采购、营销、服务及销售多个方面。
一般我们理解的“大数据”,往往存在于电子商务方面,最典型的代表就是电子商务网站。消费者在购买相关商品后,系统会自动推送相关产品,也就是所谓的“猜你喜欢”。但有时会常常出现一大堆已经购买过的类似商品,并不会促进二次消费,有时候可能会出现更为便宜,更好的商品,给购买者带来负面感受,影响购物体验。所以IBM认为,企业不应该将数据分析局限于营销方面,首先要捕获客户行为,然后把客户分群。然后是长期的客户行为分析,而且是大量的客户行为分析,从而推测客人在购买过一件商品后,之后可能购买动向。所以不能单单从营销的角度考虑,只一味推荐雷同的商品。
除了针对营销部门的数据分析外,IBM对于企业内部的管理也有相应的解决办法,也是非常重要的部分。首先就是一些零售客户最为关心的订单管理,目的就在于与生产和库存紧密结合,可以提前预知客户群的数量、类型,需要生产多少的量,以及库存量等,以避免风险及浪费。正如一些电商企业,肯定有线上的交易平台和线下的仓储,经过数据分析,就能预测订单,以缩短整个周期,从管理、运营商获得较大的收益。对于订单管理,杨旭青先生又以全球服饰品牌ZARA的案例,进一步阐述。正因为ZARA将IT技术及数据分析引入门店的摆放及库存等流程中,店面的转换率明显提升,销售率也随之大增。这就是说明了数据分析对于零售企业的巨大作用。
总的来说,IBM所做的是通过大数据或者说数据分析为手段,帮助客户进行营销改进或优化,从订单管理、生产及销售各个环节,提升效率和转化率,改进企业内部的运作机制,以做到开源节流。
AsiaAnalytics首席执行官莫利伟先生对于IBM的杨旭青的观点非常赞同。他表示,数据分析对于公司来说,从财务以及业务的状况方面都可以带来很多的好处。根据麦肯锡的一份报告指出,能够善于运用这些数据分析的公司,平均的生产率和利润额都会比不采用这一方面的技术公司都要高5到6个百分点。以市场部作为一个例子来讲,同一份报告指出,如果能够以数据为中心来进行市场营销规划和决策,它的投入产出比会比其他不采用这一类方式的公司能够高15-20%。
通过分析我们可以为客户提供一对一定制化消费的体验,因为客户希望被理解、被尊重,能够享受特别感受的购物行为。除了这种定制化一对一的消费体验,对于数据有效的分析可以很好的去理解某一些或者特定细分客户群体对他有更深的理解,反过来通过对客户的了解,可以有助于产品的研发,针对特定群体产品开发以及营销手段。
数据分析应从数据积累做起
关于数据分析对于企业最大的优势这个问题,莫利伟先生进一步说明自己的观点。首先,数据分析不一定非要和“大数据”联系在一起。目前在中国真正意义上能够使用实时、产生大量数据进行分析与业务决策的公司并不多。目前的数据分析对于企业来说,能够提升明显的效率及降低成本。例如,有个公司希望推出一种最新的饮料,希望知道到底是男性还是女性对这个饮料会更喜欢。如果做市场调研、问卷调查,找300个人,其中150个男人和150个女的,肯定会得出一定的数据量,但这一数据量只在几个KB而已,而真正需要数据量则应该达到几个MB或者到一个GB。在中国一些大型的公司,包括运营商、银行及淘宝平台,确实已经开始用到数据挖掘的方式来做一些预测性分析,帮助业务的决策。这些都是利用大量数据进行分析的案例。
其次,单纯从数据量上面来讲,不仅是大企业,在一些中小型企业中,如有若干年的积累,也可以去做数据挖掘跟预测性分析。基本来说,1万条消费者的记录,10个或者20个左右的变量,这个数据量可能在20个DB。拥有的数据量越大,数据分析的成功率也就越大。所以无论是大型企业,还是中小型企业都应该从数据积累做起,并通过有效的算法,进行深度分析,才能得出结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13