R语言 apply函数家族详解
apply {base}
通过对数组或者矩阵的一个维度使用函数生成值得列表或者数组、向量。
apply(X, MARGIN, FUN, …)
X 阵列,包括矩阵
MARGIN 1表示矩阵行,2表示矩阵列,也可以是c(1,2)
例:
>xxx<-matrix(1:20,ncol=4)
>apply(xxx,1,mean)
[1] 8.5 9.5 10.5 11.5 12.5
>apply(xxx,2,mean)
[1] 3 8 13 18
>xxx
[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
lapply {base}
通过对x的每一个元素运用函数,生成一个与元素个数相同的值列表
lapply(X, FUN, …)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
例:
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> x
$a
[1] 1 2 3 4 5 6 7 8 9 10
$beta
[1] 0.04978707 0.13533528 0.36787944 1.00000000 2.71828183 7.38905610
[7] 20.08553692
$logic
[1] TRUE FALSE FALSE TRUE
> lapply(x,mean)
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5
sapply {base}
这是一个用户友好版本,是lapply函数的包装版。该函数返回值为向量、矩阵,如果simplify=”array”,且合适的情况下,将会通过simplify2array()函数转换为阵列。sapply(x, f, simplify=FALSE, USE.NAMES=FALSE)返回的值与lapply(x,f)是一致的。
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
例:
> sapply(k, paste,USE.NAMES=FALSE,1:5,sep=”…”)
[,1] [,2] [,3]
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”,simplyfy=TRUE)
a b c
[1,] “a…1…TRUE” “b…1…TRUE” “c…1…TRUE”
[2,] “a…2…TRUE” “b…2…TRUE” “c…2…TRUE”
[3,] “a…3…TRUE” “b…3…TRUE” “c…3…TRUE”
[4,] “a…4…TRUE” “b…4…TRUE” “c…4…TRUE”
[5,] “a…5…TRUE” “b…5…TRUE” “c…5…TRUE”
> sapply(k, paste,simplify=TRUE,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,simplify=FALSE,USE.NAMES=TRUE,1:5,sep=”…”)
$a
[1] “a…1” “a…2” “a…3” “a…4” “a…5”
$b
[1] “b…1” “b…2” “b…3” “b…4” “b…5”
$c
[1] “c…1” “c…2” “c…3” “c…4” “c…5”
vapply {base}
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,以使他们具有相同的长度和类型。类型顺序:逻辑<</span>整型<</span>实数<</span>复数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
FUN.VALUE 一个通用型向量,FUN函数返回值得模板
例:
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3))
> vapply(x,mean,c(c=0))
a b c
1.8329043 6.0442858 -0.1437202
> k<-function(x)
+ {
+ list(mean(x),sd(x))
+ }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
> vapply(x,k,c(c=0,b=0))
错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是‘double’,
但FUN(X[[1]])结果的种类却是‘list’
> vapply(x,k,c(list(c=0,b=0)))
a b c
c 1.832904 6.044286 -0.1437202
b 1.257834 1.940433 3.649194
tapply {base}
对不规则阵列使用向量,即对一组非空值按照一组确定因子进行相应计算
tapply(X, INDEX, FUN, …, simplify = TRUE)
x 一个原子向量,典型的是一个向量
INDEX 因子列表,和x长度一样,元素将被通过as.factor强制转换为因子
simplify 若为FALSE,tapply将以列表形式返回阵列。若为TRUE,FUN则直接返回数值
例:
> height <- c(174, 165, 180, 171, 160)
> sex<-c(“F”,”F”,”M”,”F”,”M”)
> tapply(height, sex, mean)
F M
170 170
eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, …, all.names = FALSE, USE.NAMES = TRUE)
env 将被使用的环境
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES 逻辑值,指示返回的列表结果是否包含命名
例:
> require(stats)
>
> env <- new.env(hash = FALSE) # so the order is fixed
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> # what have we there?
> utils::ls.str(env)
a : int [1:10] 1 2 3 4 5 6 7 8 9 10
beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 …
logic : logi [1:4] TRUE FALSE FALSE TRUE
>
> # compute the mean for each list element
> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5
> unlist(eapply(env, mean, USE.NAMES = FALSE))
[1] 0.500000 4.535125 5.500000
>
> # median and quartiles for each element (making use of “…” passing):
> eapply(env, quantile, probs = 1:3/4)
$logic
25% 50% 75%
0.0 0.5 1.0
$beta
25% 50% 75%
0.2516074 1.0000000 5.0536690
$a
25% 50% 75%
3.25 5.50 7.75
> eapply(env, quantile)
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
mapply {base}
mapply是sapply的多变量版本。将对…中的每个参数运行FUN函数,如有必要,参数将被循环。
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
MoreArgs FUN函数的其他参数列表
SIMPLIFY 逻辑或者字符串,可以减少结果成为一个向量、矩阵或者更高维阵列,详见sapply的simplify参数
USE.NAMES 逻辑值,如果第一个参数…已被命名,将使用这个字符向量作为名字
例:
> mapply(rep, 1:4, 4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4
rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = “ANY”, deflt = NULL, how = c(“unlist”, “replace”, “list”), …)
X 一个列表
classes 关于类名的字符向量,或者为any时则匹配任何类
deflt 默认结果,如果使用了how=”replace”,则不能使用
how 字符串匹配三种可能结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13