忘记“大数据”,从“中数据”开始
业界对“大数据”这一概念的质疑声从来就没有停止过,很多人认为它只是一个过度炒作的营销泡沫。确实,单就数据的体量而言,大多数企业并没有Google, Facebook那样的PB级数据。 那么, 大数据究竟有没有意义呢? 数据分析专家Tom Anderson最近给出了一个概念叫“中数据”,根据他的划分, 数据集数据量在10万以下的称为“小数据”, 数据集在1000万以上的称为“大数据”,而在二者之间的称为“中”数据。 Tom Anderson认为, 企业进行数据分析的投资收益率在“中”数据范围内是最高的。 以下是IT经理网编译Tom Anderson的博文:
在我参加了这个星期的美国营销协会的第一届大数据的研讨会后,我更加坚信了我这几年与许多财富1000强企业的营销人员沟通后的一个看法。 那就是:
很少有公司能够分析到所谓“大”数据的量级,而事实上它们也并不需要。 其实, 大部分公司应该开始考虑如何从“中”数据开始。
大数据,大数据, 大数据, 人们到处在谈它, 其实我发现, 真正处理“大”数据的研究者其实很少。 我认为我们应该把“大数据”的概念范围缩小。 引入一个新的更有意义的名词:“中”数据来描述我们目前的大数据热潮。
要了解什么是“中”数据,进而理解大数据, 我们得先知道什么是“小”数据。
“小数据”
上面的图简单地按照数据记录的规模或者说样本的规模对数据的“大”“中”“小”进行了划分
小数据可以包括从定性研究的某个访谈到几千个调查问卷的结果。在这个规模上, 定性分析和定量分析可以从技术上结合起来。 而这两者都不能称之为现在定义的“大数据”。 目前对大数据的定义随着企业对数据的处理水平的不同而不同。通常的的大数据定义指的是用现有普通软件很难分析的数据量。
而这个定义是从IT或者软件提供商的角度来说的。 它描述了企业无法利用现有能力, 必须进行大量硬件软件升级进行有价值的数据分析的情况。
中数据
那么,什么是中数据呢? 进入大数据时代, 有些我们认为是小数据的数据集可能会迅速成长为大数据。 比如 3万到5万条用户满意度调查记录可以用类似IBM的SPSS软件分析。 可是, 如果把这些数据集中加入了用户的评论这样的文本数据, 同样的分析可能就会变得缓慢了。 这同样的数据集现在需要更长的时间来分析,甚至可能导致分析软件崩溃。
如果我们把同样的文本数据用文本挖掘的方式处理的话,新加入数据集的数据将会极大地增加数据量。 这常常就会被认为是大数据, 需要更加强大的软件来处理它。 不过, 我认为, 一个更准确的描述应该是“中”数据, 它其实只是真正大数据的起步阶段(这与IT经理网之前的文章“大数据需大处着眼,小处着手”中的观点不谋而合)。而且对于这个规模的数据量, 其实还是有很多简单的处理手段的。
大数据
好了,我们把大数据的一部分切出来叫做“中”数据。 现在, 我们可以重新定义“大”数据了。
为了理解“大”数据与“中”数据的区别, 我们需要考虑一些不同的维度。 Gartner的分析师Doug Laney曾经对大数据有一个著名的描述, 把大数据分为3个维度:规模(Volume), 种类(Variety)和 速度(Velocity), 通常叫做3V模型。
在理解“中”数据与“大”数据的区别时, 我们只需要考虑两个因素, 成本与价值。
成本(以时间计量或者按照金钱计量)与期望价值构成了所谓的投资收益率(ROI)。 这也可以应用于大数据项目的可行性研究。
我们知道, 有些数据天然的比其他数据具有更高的价值。 (100个客户投诉邮件可能比1000个微博上提到你的产品比起来, 对你的运营分析更有价值。) 当然, 有一点是肯定的: 没有经过分析的数据是没有价值的。
相对于“中”数据来说, “大”数据或者说“真正的大”数据量的分界点在于, 对于分析进行的投入, 相对成本(包括可能从中发现不了什么的风险)来说,并不具有吸引力。 比“中”数据更大的数据量来说, 大数据分析要么并不现实, 要么对企业来说ROI太低。
而“中”数据则是正好在数据分析的最佳范围内, 可以在相对可控的预算前提下进行有价值的分析。
对于很多市场研究人员来说, “中”数据才是一个真正能够提供有价值, 有足够ROI的分析目标。 而真正“大”数据分析, 则会呈现递减的ROI。
在最近我去德国的一次出差中, 我有幸遇到了一位在欧洲核子研究中心从事大型对撞机项目的科学家。 相对于大型核子对撞机来说, 普通的商业企业不需要像那样的软件和硬件来进行那个规模的大数据分析。 对撞机的1亿5千万个传感器每秒钟产生4000万条数据。 而实际上, 即使是欧洲核子研究中心的科学家们, 也不会去分析如此打规模的数据量。 他们在分析前过滤掉来99.999%的粒子对撞数据!
对我们普通企业来说, 对消费者的分析相对简单得多。 对于数据或者文本挖掘, 我们不需要EB或者PB级别的处理能力或者在数以千计的服务器上跑大型并发软件, 目前其实有一些很好的软件能够处理我们一般企业的“中”数据需求。 一提到大数据, 媒体常常提到的是亚马逊, 谷歌或者Facebook。 就算是这些案例中(很多 听上去更像是IT销售鼓吹的科幻小说), 也并没有提到这些公司在数据分析中实际使用的样本的量。
就像欧洲核子研究中心的科学家发现的那样, 相对一股脑处理全部数据的做法, 更重要的是能够正确的分析对研究相关的那部分重要数据。
那么, 读者可能会问“既然‘中’数据比‘大’数据更加具有吸引力, 为什么我们分析‘小’数据不是更好吗?”
这里的关键是, 随着数据量的增加, 我们不但可以对分析结果更加具有信心, 而且可能会发现一些传统的“小”数据所不能发现的现象。 对市场分析来说, 这可能意味着发现了一个新的细分产品市场或者竞争对手的新动向, 对药物研究来说, 可能意味着发现一些小的人群细分与某些癌症的高风险关联 从而拯救生命。
“中”数据应该被更加明确的定义, 而且也需要更多的最佳实践。 不幸的是, 经常有一些企业的CEO或者CIO会要求IT人员“采集所有的数据, 全面分析数据”。 这样的过程, 他们其实在制造真正的“大”数据, 这种数据量常常是超过需要的。 这就产生了我一直在提的ROI的问题。 追求真正的“大”数据常常不能给你带来任何优势。 经验丰富的“小”数据或者“中”数据的分析人员知道, 对于“大”数据的分析常常是没有满意结果的。 而相对投入的成本来说, 从ROI的角度是不值得的。
因此, 对于“大”数据分析而言, “中”数据才应该是我们真正需要瞄准的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07