小白学数据分析--留存率是什么
前段时间比较忙碌,小白系列也因此停了一段时间,这期间做了不少分析,发现和总结了不少经验,自己觉得还是很有用,不过倒都是一些基础的东西。最近很多人都在问一些基础术语和计算方式,我懂得不多,在此也想分享一下。
在网站分析、电商分析、网游分析中,对于留存率的关注度极高,这一浪潮随着APP应用、社交游戏的火爆逐渐成为一个很重要的衡量准则,也甚至有了40-20-10准则。对于这个准则不予评价,今天就是简单说说留存率就是是个什么玩意。
留存率顾名思义,就是留下来存在的比率。从时间上我们分为次日、三日、七日、14日、30日、90日、180日。从用户上来分,有新登用户和活跃用户两大类。但是我们大多数是关注时间次日、三日、七日,用户是新登用户。下面具体说说这些个概念以及为什么是这样定义形式。
次日留存率:新登用户在首登后的次日再次登录游戏的比例;
3日留存率:新登用户在首登后的第三天再次登录游戏的比例;
7日留存率:新登用户在首登后的第七天再次登录游戏的比例。
以此类推计算下去就得到了N日留存率。
在此图中,我们看到7日新登用户在8日登录的为次日留存用户,9日登录为2日登录留存用户……这就是留存基本定义,所谓留存率就是留存用户/新登的总量。留存率反映的实际上是一种转化率,即由初期的不稳定的用户转化为活跃用户、稳定用户、忠诚用户的过程,随着这个留存率统计过程的不断延展,就能看到不同时期的用户的变化情况。
之所以是这样,是因为留存是以研究新登用户为目标对象的,即我们研究某一个点的一批用户在随后的十几天,几周,几个月的时间内的生命周期情况,这样的意义是从宏观上把握用户的生命周期长度以及我们可以改善的余地。
因此这里就引申出一个问题,我们为什么要研究的是新登用户?如刚才所说的,我们要宏观观察用户的生命进程情况,那么我们最佳的办法就是从用户导入期就开始,所谓导入期就是用户进入游戏,这个地方我们的分析其实大有作为的,因为用户进入游戏时来源于不同的渠道,通过不同的营销手段拉入游戏,这样我们交叉分析,通过用户的后期留存情况就能从一个层面把握渠道质量,比如,付费,粘性,价值量,CAC成本。
那么说到留存就不得不提到另一个词就是流失,有句话我一直觉得有点道理,就是新用户看留存,老用户看流失,但是从目前我们看到的一些分析系统上似乎这部分都没开发或者省略,因为这部分的难度相对而言比较大,再者,其改善带来的效益不是立竿见影的,因此我们似乎很多时候是忽视了对老用户的质量把控和分析。因为老用户在整个用户的生命进程中是属于衰退期和流失期要关注和解决的问题[实际上从进入游戏就伴随流失,此处只是点了一部分],关于流失这里不再多讲。
刚才说到留存和生命周期扯上关系了,为什么这么说,我们来看看下面的曲线。
这里截取了4天首登用户在随后接近40天的留存变化情况。
上图是跟踪了39天的数据,我们发现留存率的变化初期是震荡的比较厉害,但是随后开始逐步的趋于平稳,下一个时期就开始逐渐稳定,保持在一个水平上,如果持续观察下去,随后开始逐渐的衰退,并最终无限趋于0。
事实上,以上的过程是符合用户生命周期的基本形式,用户在导入期用户量会增加很多,一段时间内如果我们渠道和手段得当,用户初期的几天留存质量会很好,之后随着用户的游戏内等级成长,那么就会逐渐淘汰一些人[实际上就是留存下降,流失加剧的过程],在用户的成长过程中,这样的留存牺牲是必然,而此时的淘汰就意味着接下来的用户成长将会趋于稳定,并保持一个时期。
以上我们所说的三个时期,也就是震荡期[留存高]、淘汰期[留存波动]、稳定期[留存趋于稳定水平],随后的衰退期和流失期那就是流失率分析的部分,因为这个阶段用户留存下的基本就是老用户了,当然此处不是说前三个时期的用户就不需要流失分析,相反用户导入初期的阶段[如果拥有足够的信息],正需要去做流失分析,因为初期流失是最多的。但是由于初期用户参与游戏的参与度有限,提供的信息也是有限的,偶然因素见多,所以就选择做留存分析。
一般来说留存率这类指标是需要长期持续跟踪的,且要根据版本更新,推广等诸多因素结合起来分析,试图去找到玩家的最佳周期进行制定相应的策略提升质量。
此外留存率的分析可以结合聚类,决策树等做进一步的深入分析,用于挖掘渠道具体的用户质量,盈利分析等。这类的深入的分析首先是要建立长期的留存率跟踪分析的基础上进行的,抓住留存率长期的作用特点,才能更好的把握这类深层次的分析。
最后说一句,至于是不是出于稳定期,这个得自己很好的把握和衡量,必要的时候对于变化趋势做一下显著性检验也可以检验一下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13