大数据分析兴起:“往左走”还是“往右走”
在大数据时代下,数据正变得空前多元,转移空前快速。现在,有效的数据分析需要非常先进的软件和机器。随着大数据分析兴起,传统的直觉判断有何用场呢?要是数据告诉业务经理“往东走”而她的直觉则说“往西走”,怎么办呢?
这番话出自我口中可能感觉有些让人意外——毕竟我本身是一位数据和科学研究者,不过我坚信,要实现真正的价值,必须要让基于数据和商业知识的直觉引导数据分析工作。
有人会说,你只需要将足够多的数学分析和机器性能应用到数据库,就能得到最好的模型。但是,以为光凭数据挖掘就能够产生取得业务进展所需的答案是愚蠢的。在数据科学中,直觉和数据分析相辅相成,相互启发。
首先,直觉引导分析。洞见鲜少能够凭空出现。它们是应用数值方法测试源自直觉和观察的假设和想法的结果。直觉还能够引导研究人员用于测试这些假想的方法。哪些数据相关呢?哪些变量和转变是合理的呢?原因与结果很可能是什么关系呢?哪些模型合适呢?
另外,分析启发直觉。非监督式的建模技术能够识别数据中的关系和模式,而这些关系和模式通过表面的观察或者小数据样本是看不出来的。简单来说,分析能够带来表面观察无法得出的探索途径启示,甚至可能是反直觉的。
如果没有同时让数据团队和业务团队的聪明领导者引导数据分析过程,根据工作经验和专业知识对直觉进行平衡,就会出现问题。
下面就来举几个例子。
有一消费金融团队曾想让我们做一个客户流失模型,帮助银行预测哪些客户最有可能注销账户。从那些数据看不出什么东西来。在存款、贷款和信用卡数据中,我们并没有发现明显的触发客户销户的因素。在创建新账户后,消费者的支出和付费习惯基本上没什么差别。
然而,在银行家对那些数据进行更加仔细的研究,审阅团队制作的客户细分资料后,有一位分析师借助她的直觉突然注意到了一个有价值的新洞见。她认识到,特定的客户群显现出不寻常的高价值贷款、长期客户价值和数个其它的不寻常因素,他们很可能属于小企业老板。查证那些个人账户后,该团队发现她的猜测的确没错。
她猜那些开普通账户的企业老板并不知道可能还有比信用卡或者普通贷款账户更好的融资方式。于是,该银行团队的项目目标改为鉴定这些高价值客户,向他们提供更加合适的产品。该团队后来更进一步,要求获取数据来根据历史用户行为向其它的客户群推荐合适的产品。那些数据促使他们开始向客户提供量身定做的产品,从而提高客户的终身价值。
单靠数据就得到那种重要的洞见是没什么可能的。这种结合数据分析的商业洞见可以说是无价的。
直觉在数据分析中非常重要,但很奇怪,业务团队往往会被排除在数据分析过程之外。相反,数据研究人员应当一开始就邀请商业分析员参与该过程,相互协作。我已经改变了运作流程,让整个团队参与初期的模型评估,甚至让他们参与更早的原始数据审查流程。
在另外一个案例中,我们的一位大啤酒公司客户想要预测其在日本市场的未来销量。我们建立了一个模型来研究未来一年销量面对不同的市场和定价压力会出现怎样的反响。该客户告诉我们,他们认为其啤酒销量受经济直接影响。他们觉得,如果日本经济缓慢复苏,人们的软饮料消费就会增加。
他们让我们在我们的模型中以日经指数作为一种趋势变量。该指数一开始提高了模型的准确性——或者说表面上是这样。但在接下来的一年里,该模型开始作出一些离谱的预测。日本经济开始反弹,但现在日经指数已经不在训练数据范围内,原来的那个模型可能“过度合适了”。
经验更加丰富的建模师多半不会引入那种变量。有时候直觉更为靠谱,但在该案例中,数据科学专家建议要谨慎,并认识到建模过程的限制和陷阱。我们对模型实施了改变来抑制股市指数的影响,之后我们的模型在指引制定新宣传计划和预测营销效果上都表现得很好。
数据科学家和业务人员之间往往会出现矛盾——特别是数据似乎与直觉背道而驰,新发展计划的效果似乎微不足道的时候。营销人员会质问“那个数据从何而来?”,数据科学家则做好随时反击的准备,这种情况很常见。
客观来说,这种智斗是好事。数学与科学应该能够经受住质问。有的时候,数据能够证明直觉是错误的。也有的时候,那些基于丰富经验的第六感能够找到数据分析过程的缺陷。理想情况下,大家都能从中受益,在大数据分析的应用,就是在不断碰撞中前进的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04