利用SPSS进行数据分析的基本步骤
大家都知道数据分析的基本流程为明确分析的目的和内容——数据收集——数据处理——数据分析——数据展现——报告撰写,今天这里所要说的是如何利用SPSS进行数据分析,也就是整个数据分析流程的中间部分(是指从将数据导入SPSS工具到利用SPSS工具产生分析结果,对结果进行整理,形成图表并解读分析的过程)。
利用SPSS等工具进行统计分析时,需要经过数据准备、数据转换、数据分析和数据展现这样四个阶段,下面中国统计网将对这几个阶段一一讲述:
(一) 数据准备
FAQ:这里为什么用数据准备而不用数据采集?
数据采集是一个非常繁杂漫长的过程,数据采集来源、采集频率、采集人员安排等等这些足够写一篇文章,同时这里所要谈的这个过程是从数据开始说起的,至于这些数据如何而来,这里不作讨论。
数据准备过程主要包括两部分内容:SPSS数据文件的建立和变量编辑。在SPSS数据文件建立之前,我们需要分析的数据可能以各种各样的形态存在,可能需要手动录入(小批量的数据,但通常数据的录入不在SPSS中直接进行),也可能是以其他格式形态存在,例如:.xls/.xlsx/.xlsm格式,.txt文本格式或.CSV格式,SPSS支持多种数据格式文件的导入。
除此之外,SPSS还可以直接从数据库中导入数据,利用数据库导入方式导入数据。这里需要注意的是,SPSS每执行一条指令,都会重新读取所需的数据,如果你所取的数据是利用SQL语句从远程数据库中调用的数据文件,那么将会非常耗时,此时的小技巧是利用好Cache data功能,建立活动的数据缓存区,那样SPSS的运算速度会提升很多。
SPSS数据文件成功建立后,接下来的准备工作则是对变量属性进行适当的调整和完善。例如你从公司的网站后台提取销售数据,后台数据库为了记录方便通常是将各种渠道销售数据用数字代码表示,而将这些数据成功的建成SPSS数据文件后,此时你需要对渠道代码进行编码说明,对缺失值进行标记等等。
(二) 数据清洗
此过程主要为下一步数据分析做进一步的准备,最终将数据清洗为满足分析需求的具体数据集。期间主要内容包括:
1)数据集的预先分析:对数据进行必要的分析,如数据分组、排序、分布图、平均数、标准差描述等,以掌握数据的基本特点和基本情况,保证后续工作的有效性,也为确定应采用的统计检验方法提供依据
2) 相关变量缺失值的查补检查
3)分析前相关的校正和转换工作,如根据销售额对观测值进行分类,形成新的分类变量,从对应的身份证信息中提取出地区、年龄、性别等新的变量信息等
4)观测值的抽样筛选,如抽取销售额大于10万的产品等
5)其他数据清洗工作
Tips:期间注意规划好清洗步骤和数据备份工作。
(三) 数据分析
此阶段主要根据需求,选择合适的统计方法进行统计分析和数据图表的制作,这里选择合适的方法是关键,相关操作SPSS软件已经标准流程化,我们只需要选择合适的参数进行相关操作即可。下表是根据自变量与因变量数目对各种统计方法的一个归类:
除了上述方法外,SPSS 17.0以上的版本还提供了一个直销模块,这部分内容是对市场营销活动中的用的比较多的模型的整理浓缩,本贴暂时不对数据分析的相关内容做深入详细的介绍,以后将针对案例对这部分内容进行详细叙述。
(四) 数据展现
常常听到有人抱怨SPSS输出的图表太丑,修改编辑起来太麻烦,真的是这样吗?其实SPSS软件有提供很多的图表供大家选择,太多的时候,我们所使用的只是其中的一种而已。除此之外,SPSS也提供自己定义图表模版功能供我们自由操作。
SPSS的菜单操作通常会输出很多多余的结果,对这些结果进行有针对性的挑选和组合才是工作的重点,而不是一味的将所有分析结果一股脑的全搬到报告中去,在写报告前对这些结果进行合理的简化和整合是必须的,与此同时,相应的结果解释(探讨是否接受或拒绝研究假设,解释结果形成的原因)以及相关含义衍生都在此部分完成。例如,我们进行方差分析时,SPSS可能直接输出如下图的结果,但我们展现结果的时候并不需要这么多看起来让人眼花的数据结果,只需要从下表中提取出需要的那部分即可。
变异来源
型Ⅲ SS df 均方
F Sig.
整体模型
391.628 6 65.271
4.894 .001
Day
Round
Gender
271.367 3 90.456
106.297 2 53.148
13.964 1 13.964
6.783 .001
3.985 .026
1.047 .312
注:这里举这个示例只是表达一种方法,对于模型的结果完整性并未作太多的考究
从上表三因素方差分析表可知,整体模型达显著水平。其中Day和Round的主效应达到显著水平,但Gender的主效应未达到显著水平。除此之外,此模型还未考虑三者之间的交互效应……(结合其他图表的结果作深一步的分析说明,并结合业务情况对结果进行分析说明)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30