打破数据挖掘5神话
数据挖掘是一种强大的分析工具,可以使企业管理人员从描述顾客历史行为开始进一步达到预测顾客未来行为。它可以找出能解释顾客行为的规律。这些数据可以用来增加收入、降低费用、找出商业机会,以增加新的竞争优势。
会有关于数据挖掘的神话产生的部分原因是人们对它没有一个清晰的概念。数据挖掘的本质是一套复杂的数学方法,用来在详细的数据中找出并解释以前未知的规律。数据挖掘解决的是不同类型的问题。它可以用来预测未来的事件,例如在进行市场推广后的下一个月份的销售额。
许多成功的公司已经意识到,围绕着数据挖掘而衍生的神话并非事实。有远见的企业不仅不会成为这些神话的受害者,而且他们会通过使用数据挖掘来解决复杂的企业问题并达到赢利,因此获取了巨大的竞争优势。由此打破了有关数据挖掘的5个神话。
神话一:数据挖掘提供立时可见的预测
数据挖掘既不是占卜用的水晶球,也不是一按按钮答案就会魔术般跑出来的技术。它是一个多步骤过程,包括明确企业问题、研究并整理数据、开发模型、应用获取的知识。一般情况下,各企业都用大部分时间来对数据进行预处理和整理,以保证数据无冗余、无瑕疵、连贯一致及合理组合,以提供可靠的商业情报。数据挖掘的一切都是围绕数据来进行的,成功的数据挖掘需要准确反映企业运营的数据。
各企业必须了解数据挖掘的优势所在,即处理本质上可预测或可描述的具体企业问题。这些问题包括:客户细分、预测顾客购买倾向、查找欺诈、渠道最优化。
神话二:数据挖掘还不适用于商业应用
数据挖掘是一个可行的技术,其商业效果得到了高度评价。关于不适用于商业应用神话的产生归因于那些需要解释他们为什么还没有使用数据挖掘的人,且围绕着两个相关的陈述。第一个是“超大型数据库不能被有效地进行挖掘”。第二个是“数据挖掘在数据仓库引擎中不能进行。”
让我们同时解决这两个陈述的问题。因为现在的数据库非常大,所以许多企业均担心数据挖掘项目所需的额外IT基础设备会增加巨大的成本,而且针对某一项目的数据处理要花过分长的时间。但是目前有些数据库使用平行技术,它可以在数据库内进行挖掘。通过在数据库内进行挖掘,各企业可以不移动数据,利用平行处理,将数据冗余降为最低,避免因建立及维护一套全新的、数据挖掘专用的冗余数据库所带来的成本费用。通过平行处理进行的数据库内挖掘即是可行的数据挖掘技术。
神话三:数据挖掘需要单独的、专用的数据库
数据挖掘供应商一般会宣称,你需要一个昂贵的、专用的数据库、数据集市或分析服务器用于挖掘数据,因为需要将数据拉入一个专属格式以进行高效数据处理。这些数据集市不仅购买及维护的费用昂贵,它们还要求每一个单独的数据挖掘项目都进行数据抽取,这是一个昂贵并费时的过程。
数据库技术的发展使得数据挖掘可以不在单独的数据集市中进行。实际上,有效的数据挖掘需要建立一个企业级数据仓库,其全部成本比采用单独的数据集市的成本要低得多
现在我们来分析一下其中的原因。当在整个企业范围内采用数据挖掘项目时,使用数据挖掘模型的用户持续增加,同时使用大型数据基础设备的需求也在增加。一个尖端的企业级数据仓库不仅高效地储存了所有企业数据,省去了大部分其他数据集市或数据库,它还为数据挖掘项目建立了一个理想的基础。此基础是一个单一的企业范围内的数据存储库,它提供了前后一致的最新的顾客情况。通过将数据挖掘延伸整合到数据仓库,企业还可以在另外两个方面降低成本。首先,无须为数据挖掘购买并进行维护额外的专用硬件设备;其次,因采用数据挖掘技术,企业可将把数据从数据仓库中导出和导入的需求降为最低,而这一过程,像我们介绍的那样,是需要花费大量的人力和资源的。
神话四:只有博士们才会做数据挖掘
一些人认为数据挖掘是非常复杂的,至少需要三个博士才能实施它:一位来自于统计或量化领域;一位在商业领域,他了解顾客;另一位来自于计算机科学。
而实际上,成功的项目里从没有见过一个博士的身影。
数据挖掘是在以下三个领域中通过所有专业员工的合作所达成:商业运营人员提出一套明确的企业问题来引导此项目,然后他们必须解释出现的规律;分析建模人员了解数据挖掘技术、统计学和工具,他必须建立一个可靠的模型;IT人员提供了对处理及对数据理解的洞察力,也提供了关键的技术支持。
神话五:数据挖掘仅为大型公司所用
一个公司,不论大小,只要它能准确地反映其业务或客户的数据,它就可以建立运用这些数据的模型,以提供洞察重要的商业挑战的能力。企业具有的顾客数据量从来不是一个问题。
例如,Midwest Card Services公司(MCS)为20万位顾客提供电话市场推广服务、ATM管理服务、签账卡和专门的金融服务。此公司使用了一个集中式数据库以更加了解其客户群,进行有效的客户细分,并了解他们的规律及偏好。这使得MCS可以改进它自己的保险机制,并为客户提供全面的业务报告。
我们的结论是:数据挖掘不再是运行缓慢、价格昂贵或过于复杂而无法有效运行。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16