应用数据挖掘进行客户关系管理
在当今市场上,商业的成功离不开有效的客户关系管理(Customer Relationship Management,CRM)。客户关系管理的本质是更有效地进行竞争。客户关系管理的目标是缩减销售周期和销售成本、增加收人、寻找扩展业务所需的新的市场和渠道、以及提高客户的价值、满意度、赢利性和忠实度。企业实施客户关系管理,可以更低成本、更高效率地满足客户的需求,从而可以最大程度地提高客户满意度及忠诚度,挽回失去的客户,保留现有的客户,不断发展新的客户,发掘并牢牢地把握住能给企业带来最大价值的客户群。
客户关系管理最基本的含义就是管理所有与客户的相互作用。随着客户信息的绝对容量的急剧增大,企业与客户的相互作用日益复杂,数据挖掘被推到了客户关系管理的最前端。利用在传统的数据库技术基础上发展起来的数据挖掘等先进的智能化信息技术,利用神经网络等分析技术,挖掘出潜在的有用信息,用于企业辅助决策。
有效的客户关系管理中数据挖掘的基本步骤
1. 定义商业问题(Define business problem)。每一个客户关系管理应用程序都有一个或多个商业目标,为此你需要建立恰当的模型。根据特殊的目标,如“提高响应率”或“提高每个响应的价值”,需要建立完全不同的模型。问题的有效陈述包含了评测客户关系管理程序结果的方法。
2. 建立行销数据库(Build marketing database)。需要建立一个行销数据库,因为操作性数据库和共同的数据仓库常常没有提供所需格式的数据。此外,客户关系管理应用程序还可能影响系统快速、有效地执行。在建立行销数据库的时候,需要对它进行净化— 如果想获得良好的模型,必须有干净的数据。需要的数据可能在不同的数据库中,如客户数据库,产dAn数据库以及事务处理数据库。这意味需要集成和合并数据到单一的行销数据库中,并协调来自多个数据源的数据在数值上的差异。
3. 探索数据(Explore data)。在建立良好的预测模型之前,必须理解所使用的数据。可以通过收集各种数据描述(如平均值、标准差等探索统计量)和注意数据分布来开始进行数据探索。可能需要为多元数据建立交叉表,并且,图形化和可视化工具可以数据准备提供重要帮助。
4. 为建模准备数据(Prepare data for modeling)。这是建立模型之前数据准备的最后一步。这一步中主要有四个主要部分:一是要为建立模型选择变量,理想情况是将你拥有的所有变量加入到数据挖掘工具中,找到那些最好的预示值,但在实际中,这是非常棘手的。其中一个原因是建立模型的时间随着变量的增加而增加。另一个原因就是盲目性,包括无关紧要的数据列被加入,却很少甚至不能提高预测能力。二是从原始数据中构建新的预示值,例如使用债务——收入比来预测信用风险能够比单独使用债务和收人产生更准确的结果,并且更容易理解。三是你需要从数据中选取一个子集或样本来建立模型,使用所有的数据会花费太长的时间或者需要购买更好的硬件,对大多数客户关系管理问题来讲,使用经过恰当的随机挑选的子集并不会引起信息不足。建立模型的两种选择为:使用所有数据建立少数几个模型,或者建立多个以数据样本为基础的模型,后者常常能帮助你建立更准确有力的模型。四是,需要转换变量,使之和选定用来建立模型的算法一致。
步骤2到4是组成数据准备的核心。他们花费的时间或努力比其他几步加起来还多,数据准备和模型建立之间可能反复进行,因为你从模型中学到新的东西,而这又要你修改数据。数据准备阶段无论如何也要占去全部数据挖掘过程的50%到90%的时间和努力。
5. 数据挖掘模型的建立(Build model)。模型建立是一个迭代的过程,需要研究可供选择的模型,从中找出最能解决你的商业问题的一个。大多数客户关系管理应用程序都基于一种叫做监督学习的协议。你开始使用客户信息,而且期望的结果是已知的。例如,你有来自以前的邮件列表的历史数据,它与你现在使用的数据非常相似,或者,你可能不得不进行邮寄测试来确定人们对一个提议的响应如何。你将数据分为两组,使用第一组来训练或评估模型,接着使用第二组数据来测试模型。当训练和测试周期完成之后,模型也就建立起来了。
6. 评价模型(Evaluate model)。评价模型结果的方法中,最可能产生评价过高的指标就是精确性。假设有一个提议仅仅有1%的人响应。模型预测“没有人会响应”,这个预测99写是正确的,但这个模型100%是无效的。另一个常使用的指标是“提升多少”,用来衡量使用模型后的改进有多大,但是它并没有考虑成本和收入,所以最可取的评价指标是收益或投资回收率。针对不同的目标,如提升最大利润或最大投资回收率,你可以选取不同百分比的邮件列表来发出请求函。
7. 将数据挖掘运用到客户关系管理方案中(Deploy model and results)。在建立客户关系管理应用时,数据挖掘常常是整个产品中很小的但意义重大的一部分。例如:通过数据挖掘而得出的预测模式可以和各个领域的专家知识结合在一起,构成一个可供不同类型的人使用的应用程序。数据挖掘实际建立在应用程序中的方式由客户交互作用的本质所决定。与客户的交互作用的两种方式:客户主动联系你(inbound)或者你主动联系他们(outbound)。部署的需求是完全不同的。后一种方式的特征由你的公司所决定,因为联系活动是由公司发起,例如直接邮寄活动。结果,通过运用模型到你的客户数据库,来选择客户进行联系。在inbound事务中,如电话定购、Internet订购、客户服务呼叫等,应用程序必须实时响应。因此数据挖掘是内含在这种应用程序中的并且积极地做出推荐动作。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20