数据分析入门之随笔记
数据的一面是银弹(Silver Bullet):无所不能,增长黑客(Growth Hacking),决策分析(Decision Making);数据的另外一面是镜子(Reflection):可以看清楚很多苟且和远方的田野。如何发现利用数据的价值,就是数据分析的目标。
数据分析的重要性可以分为两点:
第一是帮助核心业务(Business)成长,找到和验证业务增长点
第二是有效的业务推动(Marketing),提高推广的效率(ROI)。
我把营销(Marketing)作为独立的数据分析角度,因为数字营销极度依赖于数据分析,并且有一些通用的分析模型,它同时也是一个非常大的产业,它是各个软件巨擘必争之地。
最近十几年,数据的收集和处理能力大大提升,越来越多的传感器和数据收集,许多大公司的数据正在从TB级别走向PB级别。互联网公司之间的模式竞争,也转战到对于数据价值的挖掘的能力上,很多时候也就是速度和效率的竞争。不要迷信数据,更不要忽视数据。很多时候,数据是你业务的指南针和护城河。
数据量快速增长,数据分析人才紧缺,数据分析工具依赖性,数据分析服务的强需求都反映了公司从粗放型到精细化的转型。
1.什么是数据分析(Data Analysis)?
为了理解数据分析,首先理解一下数据的概念。管理学家罗素·艾可夫在1989的《 “From Data to Wisdom”,Human SystemsManagement 》提出了DIKW体系体系,这是关于数据、信息、知识及智慧的一个模型,完美诠释了四者的关系。Data(数据)->Information(信息)->Knowledge(知识)->Wisdom(智慧)。
2. 数据分析的技术
技术上就是以发现有用信息,知识和洞察为目的,进行数据收集,处理,清晰,过滤,以支持决策制定。有好几概念有些混淆,花点时间解释一下:
a. 数据挖掘(Data Mining):数据挖掘是以预测为目标的数据建模和知识探索的一个子学科,好多年前,它一直是一个热门的研究生专业,直到信息检索专业的出现。
b. 商务智能(Business Intelligence):BI是一个利用数据的聚合(Aggregation)和分片(Slice)的能力,进行业务监控和洞察发掘。
数据分析也是一种艺术(Art),所谓艺术就是结合技术,想象力,经验和意愿的综合因素的平衡和融合。数据分析也是一个经验和想象力的融合:它涉及到数学算法,统计分析,工具和软件工程的一种结合,最后的目的是解决业务的问题,帮助人从数据中获得智慧。
下面列了几个常用的分析技术范式:
1. 统计模型:利用统计模型处理数据的方法
2. 探索式(exploratory):不设定假设目标,自由发掘和探索
3. 稳定性(Stability ofResults):分析结果的稳定性评估,又是进行交叉验证。
4. 假定验证(HypothesisTesting):预先设定好结论,通过测试校验结论
下面是涉及到算法,工程,统计等的相关技术,每一种细分技术都是一个大学问,好的数据科学家,可以游曳穿行其中,找到数据中有价值的洞察。
3.数据从业者的职业名称
从事数据的工作者,历史上我见识过了不少名称,包括“数据分析师”,“数据经理”,“运营分析师”,“软件工程师”,“算法工程师”,“策略分析师”,“数据科学家” 等等。其中最酷的名字还是LinkedIn发明的“数据科学家(Data Scientist)”,这个名称也被Forbes评为本世纪最”性感“的工作了。我估计,这是全世界最多的科学家团体了,小时候总觉得科学家必须白发苍苍才行的,现在很多同学刚毕业就是”数据科学家“,很让人羡慕。
数据分析实际上是三个方面的融合,包括数据,工程和业务。数据是智慧的原矿石,工程是采矿机,业务是指北针,只有三个方面融合起来,才能最有效的发现数据的价值。我相信一个好的数据分析师必须有工程背景,必须对数据敏感,而且愿意主动解决业务问题。
4.数据分析公司的生态圈
数据分析的的公司非常多,大大小小,林林总总。有小而美的硅谷创业公司,有老牌大公司的老树新花。很多创业公司的市值一路飙升到无法接盘的状态。例如,Palantir估值已经到了200亿美元,但是最近可持续的收入却不断减少,引来不少麻烦。
我把数据分析公司分为三类:
第一类是基础服务提供者,主要提供一些软件工具,Hadoop和Spark的生态公司,帮助数据基础架构的建设,也包括一些数据可视化公司。
第二类是通用分析服务提供公司,包括Palantir,IBM的Watson Analytics,SAS, Google Analytics 等等,这类公司提供数据分析服务或者工具,利用专家背景,系统规模和数据资源,帮助解决客户的问题,特别是很多老牌公司通过收购传统数据分析公司,快速重新包装成新的高大上产品。
第三类是专注行业的数据分析公司,例如生物信息,市场营销分析等等。
5.三种常见的业务分析模型:
GrowthHacker,AARRR,LTV
看完了欣欣向荣的数据分析行业,是不是感到有些热血沸腾。不过我们还是要回到现实的的,落地的数据分析任务。大部分互联网公司,面临的业务增长的压力,都希望通过数据分析来提升竞争力。其中,有三种常见的业务运营增长模型。
1. 黑客文化的Growth Hacker
2. 经典的AARRR漏斗模型
3. 游戏中的LTV模型
1) 增长黑客(Growth Hacker)的数据和分析
GrowthHacking,它指的是一种用户增长的方式,简单说就是通过某些手段和策略帮帮助公司形成快速成长,通常是数据驱动的方法。对创业公司、特别是初创公司来说,在没有广告预算、市场营销活动以及市场推广专员的情况下,GrowthHacking 也可以获得良好的效果。
2) AARRR模型
AARRR是Acquisition、Activation、Retention、Revenue、Refer,这个五个单词的缩写,分别对应这一款移动应用生命周期中的5个重要环节。每一个环节都有些关键指标,可以进行数据分析,找到提升的机会。
3) 生命周期价值(LTV)模型:
LTV是LifeTime Value,它是游戏行业用于衡量用户价值的一种方式和模型。LTV是指在一定时间内,某一客户可能为企业带来的利润额.顾客终身价值是指企业在获得新顾客后的一段时间内,每一位顾客的平均利润净现值。由于游戏有很强的时间相关性,因此LTV会累计一段时间的数据。
6. 几个有特点的数据分析工具
从公司类型上来说,数据分析公司简单可以分为两类:1传统大型IT公司 2互联网创新公司。很多传统大公司都涌入数据分析行业,大多都是希望利用自己的客户,硬件和软件优势,通过数据分析转型成SaaS服务提供商,例如IBM,Oracle等。另外一个就是互联网创新公司,大量数据科学家形成了大大小小数据分析创业公司,
数据分析从来就是一个热门词,像人工智能一样,从来都吸引眼球;很多时候,数据被滥用成了一把上方宝剑,谁不服就用数据砸谁。实际上,数据告诉你的更多的眼前的苟且,而我们需要思考的更多的是诗和远方。数据分析可以给我提供很多的数字,但却无法代替的人的思考:如何简化问题?如何抽象和分解复杂?如何排除万难?数据分析只会让工作更加有意思和挑战!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30