大数据给机器学习带来了什么影响
在人工智能界有一种说法,认为机器学习是人工智能领域中最能体现智能的一个分支。从历史来看,机器学习似乎也是人工智能中发展最快的分支之一。
在二十世纪八十年代的时候,符号学习可能还是机器学习的主流,而自从二十世纪九十年代以来,就一直是统计机器学习的天下了。不知道是否可以这样认为:从主流为符号机器学习发展到主流为统计机器学习,反映了机器学习从纯粹的理论研究和模型研究发展到以解决现实生活中实际问题为目的的应用研究,这是科学研究的一种进步。
平时由于机器学习界的朋友接触多了,经常获得一些道听途说的信息以及专家们对机器学习的现状及其发展前途的评论。在此过程中,难免会产生一些自己的疑问。借此机会把它写下来放在这里,算是一种“外行求教机器学习”。
一问:符号学习该何去何从
问题一:在人工智能发展早期,机器学习的技术内涵几乎全部是符号学习。可是从二十世纪九十年代开始,统计机器学习犹如一匹黑马横空出世,迅速压倒并取代了符号学习的地位。人们可能会问:在满目的统计学习期刊和会议文章面前,符号学习是否被彻底忽略?它还能成为机器学习的研究对象吗?它是否将继续在统计学习的阴影里生活并苟延残喘?
对这个问题有三种可能的回答:一是告诉符号学习:“你就是该退出历史舞台,认命吧!”二是告诉统计学习:“你的一言堂应该关门了!”单纯的统计学习已经走到了尽头,再想往前走就要把统计学习和符号学习结合起来。三是事物发展总会有“三十年河东,三十年河西”的现象,符号学习还有“翻身”的日子。
第一种观念我没有听人明说过,但是我想恐怕有可能已经被许多人默认了。第二种观点我曾听王珏教授多次说过。他并不认为统计学习会衰退,而只是认为机器学习已经到了一个转折点,从今往后,统计学习应该和知识的利用相结合,这是一种“螺旋式上升,进入更高级的形式”,否则,统计学习可能会停留于现状止步不前。王珏教授还认为:进入转折点的表示是Koller等的《概率图模型》一书的出版。至于第三种观点,恰好我收到老朋友,美国人工智能资深学者、俄亥俄大学Chandrasekaran教授的来信,他正好谈起符号智能被统计智能“打压”的现象,并且正好表达了河东河西的观点。全文如下:“最近几年,人工智能在很大程度上集中于统计学和大数据。我同意由于计算能力的大幅提高,这些技术曾经取得过某些令人印象深刻的成果。但是我们完全有理由相信,虽然这些技术还会继续改进、提高,总有一天这个领域(指AI)会对它们说再见,并转向更加基本的认知科学研究。尽管钟摆的摆回还需要一段时间,我相信定有必要把统计技术和对认知结构的深刻理解结合起来。”
看来Chandrasekaran教授也并不认为若干年后AI真会回到河西,他的意见和王珏教授的意见基本一致,但不仅限于机器学习,而是涉及整个人工智能领域。只是王珏教授强调知识,而Chandrasekaran教授强调更加基本的“认知”。
二问:“独立同分布”条件对于机器学习来讲必需吗
问题二:王珏教授认为统计学习不会“一帆风顺”的判断依据是:统计机器学习算法都是基于样本数据独立同分布的假设。但是自然界现象千变万化,王珏教授认为“哪有那么多独立同分布?”这就引来了下一个问题:“独立同分布”条件对于机器学习来讲真的是必需的吗?独立同分布的不存在一定是一个不可逾越的障碍吗?
无独立同分布条件下的机器学习也许只是一个难题,而不是不可解决的问题。我有一个“胡思乱想”。认为前些时候出现的“迁移学习”也许会对这个问题的解决带来一线曙光。尽管现在的迁移学习还要求迁移双方具备“独立同分布”条件,但是不能分布之间的迁移学习,同分布和异分布之前的迁移学习也许迟早会出现?
问题三:近年来出现了一些新的动向,例如“深度学习”、“无终止学习”等等,社会上给予了特别关注,尤其是深度学习。但它们真的代表了机器学习的新的方向吗?包括周志华教授在内的一些学者认为:深度学习掀起的热潮也许大过它本身真正的贡献,在理论和技术上并没有太多的创新,只不过是由于硬件技术的革命,计算机速度大大提高了,使得人们有可能采用原来复杂度很高的算法,从而得到比过去更精细的结果。当然这对于推动机器学习应用于实践有很大意义。但我们不禁要斗胆问一句:深度学习是否又要取代统计学习了?
事实上,确有专家已经感受到来自深度学习的压力,指出统计学习正在被深度学习所打压,真如我们早就看到的符号学习被统计学习所打压。不过我觉得这种打压还远没有强大到像统计学习打压符号学习的程度。这一是因为深度学习的“理论创新”还不明显;二是因为目前的深度学习主要适合于神经网络,在各种机器学习的方法百花盛开的今天,它的应用范围还有限,还不能直接说是连接主义方法的回归;三是因为统计学习仍然在机器学习中被有效的普遍采用,“得到多助”,想抛弃它不容易。
四问:只有统计方法适合于在机器学习方面应用吗?
问题四:机器学习研究出现以来,我们看到的主要是从符号方法到统计方法的演变,用到数学主要是概率统计。但是,数学之大,就像大海,难道只有统计方法适合于在机器学习方面应用吗?
当然,我们也看到看了一些其他数学分支在机器学习上的应用的好例子,例如微分几何在流形学习上的应用,微分方程在归纳学习上的应用。但如果和统计方法相比,它们都只能算是配角。还有的数学分支如代数可能应用得更广,但是在机器学习中代数一般是作为基础工具来使用,例如矩阵理论和特征值理论。又如微分方程求解最终往往归结为代数问题求解。它们可以算是幕后英雄:“出头露面的是概率和统计,埋头苦干的是代数和逻辑”。
是否可以想想以数学方法为主角,以统计方法为配角的机器学习理论呢?在这方面,流形学习已经“有点意思”了,而彭实戈院士的倒排随机微分方程理论之预测金融走势,也许是用高深数学推动新的机器学习模式的更好例子。但是从宏观角度看,数学理论的介入程度还远远不够。这里指的主要是深刻的、现代的数学理论,我们期待着有更多数学家参与,开辟机器学习的新模式、新理论、新方向。
问题五:上一个问题的延续,符号机器学习时代主要以离散方法处理问题,统计学习时代主要以连续方法处理问题。这两种方法之间应该没有一条鸿沟。
流形学习中李群、李代数方法的引入给我们以很好的启示。从微分流形到李群,再从李群到李代数,就是一个沟通连续和离散的过程。然后,现有的方法在数学上并不完美。浏览流形学习的文献可知,许多理论直接把任意数据集看成微分流形,从而就认定测地线的存在并讨论起降维来了。这样的例子也许不是个别的,足可说明数学家介入机器学习研究之必要。
六问:大数据给机器学习带来了本质影响吗?
问题六:大数据时代的出现,有没有给机器学习带来本质性的影响?
理论上讲,似乎“大数据”给统计机器学习提供了更多的机遇,因为海量的数据更加需要统计、抽样的方法。业界人士估计,大数据的出现将使人工智能的作用更加突出。有人把大数据处理分成三个阶段:收集、分析和预测。收集和分析的工作相对来说已经做得相当好了,现在关注的焦点是要有科学的预测,机器学习技术在这里不可或缺。这一点大概毋庸置疑。然而,同样是使用统计、抽样方法,同样是收集、分析和预测,大数据时代使用这类方法和以前使用这类方法有什么本质的不同吗?量变到质变是辩证法的一个普遍规律。
那么,从前大数据时代到大数据时代,数理统计方法有没有发生本质的变化?反映到它们在机器学习上的应用有无本质变化?大数据时代正在呼唤什么样的机器学习方法的产生?哪些机器学习方法又是由于大数据研究的驱动而产生的呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17