论传统行业和电子商务的对数据分析的不同运用
电商界有种说法,说传统企业的电商缺乏电子基因,而电商新贵缺乏商业基因,大数据分析观察来看,就是一个缺乏有效引流、流量转换、网站粘客等产品和运营手段,而另一个缺乏成本费用控制的有效手段,让快速增长沉淀下来。
保守而稳重与快速而多变发展
有一段时间公司电商迷茫期间(规模还不大的时候),停止了大部分引流推广投入,来降低费用支出,当时老客户消费占比一度达到60%以上,这在规模不大的电商里,发展会非常缓慢的。虽然保守稳重,但规模尚小,所以即便这样,还是亏本。物极必反,这种思路是不可取的,电商界规模小还不赚钱,还不如规模大不赚钱。当后面继续推动流量推广,老客户活跃度提高的同时,还能达到新老客户比例6:4到7:3,在规模大幅提高的同时,盈利预期反而有好转。
还有一个案例,曾经为某互联网产品分析诊断,发现其发展速度非常快,但快在新客户增长快、一次性使用产品的人数增长快,但用户几乎没有粘性。其核心原因是,产品目标客户群体都是贪小便宜的,每次增长都离不开抽奖、活动,但当客户使用之后,发现索然无味,于是就大部分没有后文了,甚至退出注册了。
在关联性分析中,我们发现只有少数沉淀下来的客户之间的交流,是收入增长的动力,活动刺激与收入并非主因,所以我们建议客户细分后,建立话题组,来吸引客户之间的持续交流。有决策者问,这个结论应该可以猜到啊,我说我分析结论的重点不是要证明收入和客户之间交流有线性关系这种能猜到的结论,主要证明现在花90%精力运营和策划的所有活动刺激都与收入上升没有直接的关系,需要把绝大部分精力由想活动办法到想吸引他们互相交流的专题和他们之间的精确匹配。但如果主要运营方向还是注重刺激,那么这个情况仍不可逆转。后来的情况就是,业务决策还是觉得“吃鸦片还是要过瘾点”,虽然数据分析提出的产品改进方向和运营建议已经有了,但觉得产品和运营提高哪有那么容易,不如“吃鸦片”轻松,这就不是数据分析能改变的结果了。
客户产品贡献与价值
如果要二者兼得,很多似乎决策者都是有思路和方向,那剩下的就是执行,执行靠的是数据分析的精确运营手段。
从数据的角度看,销售规模和利润,都可以分客户、产品、其他运营成本三个大角度来看。我们常听说要细分客户,提高客户黏度、客户忠诚度,但都是从纯市场角度考虑客户的分析和运营,所以无法与财务角度接轨。客户黏度和忠诚度,在财务角度仅仅体现在对公司的累积销售、市场贡献,并未显现出“利润贡献”。
利润贡献需要考虑如下角度:
累积销售额
累积销售毛利
累积成本费用
这个对客户、产品都有效,其中传统企业对于产品的研究已经有非常久的积累,所以可以延伸到客户角度继续探讨。客户毛利很好计算,就是他购买产品贡献的毛利;客户的成本费用,即使不算分摊费用,那么客户所占客服资源、客户退换货、客户激活成本等都是可量化的,这些综合因素,就是所谓的客户价值分析。简单分析,可以用四象限大概分论,深入分析就是进一步量化。对于不同价值趋向的客户,都可以引导向企业想要的目标,例如某客户黏度高,但毛利贡献少,激活有时需要成本,对于这样的客户,对应的运营手段,应该是继续让用户感觉占到便宜,但暗中推销高毛利低总价且有实用价值的产品给他。
产品价值在传统领域已经有了长久积累的经验,那就是一规划生命周期,二是制定毛利和平均毛利率目标,三是动态分析调整产品营销策略。具体以前已经提到过,这里不用多讲。
殊途同归的总结
据说很多电商新贵已经开始重视数据分析与财务驱动了,但是稍微为时过晚,因为客户选择后客户价值已经被拉低,库存累计且产品价值偏低,要花更大的代价才能逐步挽回。而传统企业转型中,可能受老业务影响,会束手束脚,资源和人才跟不上。
从数据分析可以看出,其实无论电商注重财务角度,包括客户、产品价值贡献的提升,还是传统企业注重网络营销效果、网站布局优化,都是为了更好地发展电商,他们并不矛盾,只是出发点不同。而数据分析的价值就是对这些业务运营量化,与“较虚”的战略目标匹配得上。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21