我们为什么要注重数据分析,对此我的想法是:
有效避免拍脑袋、主观臆想;
为决策提供支撑,更能说服人;
通过数据分析,可以看到决策的效果、问题以及未来应该如何做。
知乎用户@绡页的答案很简单,但却一语中的:
“知错能改,善莫大焉”——可是错在哪里,数据分析告诉你。
“运筹帷幄之中,决胜千里之外”——怎么做好“运筹”,数据分析告诉你。
“以往鉴来,未卜先知”——怎么发现历史的规律以预测未来,数据分析告诉你。
一般而言,数据分析的逻辑是:先梳理一件事的目的、流程和逻辑(实际上也就是梳理清楚业务逻辑),界定出关键用户行为和数据,分析数据找到问题,思考解决方案。
比如某电商做了一个专题活动,但效果却并不理想,现在需要寻找原因,那么它的逻辑就大致是:首先梳理用户消费流程:专题活动页面——商品页面——下单购买,或者是通过搜索/导航——商品页面——下单购买;然后界定出关键的用户行为:打开专题页或通过搜索导航、进入商品页面、点击购买、下单等;再然后确认是用户的哪个行为数据是否有异常的地方,也就是找到问题所在;最后就是思考怎样去解决这个问题。
在数据来源正确的前提下,数据分析的方法可以分为定性分析和定量分析。
定性分析,就是对事物的性质作出判断,究竟它“是什么”。比如最近某一个产品的用户活跃度大幅度提升,而结合该款产品最近的更新情况可知,用户活跃度之所以大幅提升是该款产品上线了一个新功能导致的。
定量分析,是指对事情的数量做出统计,衡量它“有多少”。比如产品优化了登录注册流程,这一优化的效果是怎样的,带来了多少新注册用户,增长率是多少。
在《增长黑客》中有一段对数据分析的精彩论述,其中也有提到定性分析和定量分析的关系:
数据分析就是定性分析和定量分析的相互结合,不断验证的过程。提出假设、设计方案、分析数据、验证或推翻假设,最终抽丝剥茧,逐渐接近真相。数据是相互印证的,彼此之间有如通过无形的网络纵横连接,只需轻轻按动其中一个就会驱使另外一个或一组产生变化。
通过数据分析得出的结论,应当能反推出其他数据,或是与其他数据分析得出的结果相一致。例如,假设某日在线订餐网站的数据量猛升,猜测与天气阴雨、用户窝在办公室或家中不愿出门有关,那么就应当去翻查近期之内网站在阴雨天期间的访问数据,看是否出现了类似的攀升。
就我自己亲身工作经历而言,数据分析的流程应该是:
明确目的——拉取数据——处理数据——寻找异常点——得出结论——验证结论
明确目的:清楚并理解此次分析的目的是什么,比如寻找某地城市的流量锐减的原因,这个很多时候是建立在你对业务逻辑/流程的理解,如果不了解的话,你所做的不是数据分析,顶多就是个数据整理的工作。而这就要求先确认分析维度,包括拉取什么数据、核心变量是什么、核心变量是否受到其他外界因素的影响(是否有其他需求上线?能否取到准确来源的数据?时间范围的数据是否出现数据问题?)
拉取数据:很多时候我们需要自己动手从数据库里拉取相关数据,在拉取数据时,需要注意以下几点:能在数据库里处理的,就不要拉到excel中处理;语句是否完整:引号、分号、group by;条件限制是否准确:时间、平台、页面、类别、是否去重、是否清洗;语句逻辑是否正确;所取时间段数据是否不受外界因素影响等等。
处理数据:保存拉取出来的数据作为原始数据,保留相应的语句;掌握常用函数(Vlookup、sum、Average、if、If error);当你认为所需要做的事情特别繁琐时,找人问;或者将你的问题清楚表述,然后百度,你要相信,你所遇到的问题别人很有可能早就遇到过。
至于寻找异常点、得出结论这两步,则是需要结合具体的业务才能进行,而验证结论,则是需要从其他维度去验证一下结论的可靠性,我觉得找老大review是最简单最暴力的一种方式。
A、如我们所知,对待数据一直以来都有不同的态度,有的人做任何决策都希望能够有数据作为支撑,同样有的人追求的是对人性的洞察,追求的是对未来的预见。在我的理解范围内,这两者本质上并没有直接对立的成分在,没必要将两者对立起来,我们唯一要关注的东西就是实现目的。在关注目的/结果的时候,我们就会很清晰的明了,不管是数据流还是人性派,都只是手段,清楚目的所在,就不会轻易因为数据不好看就放弃某个决策,也不会固执坚持某个观点。
B、关于数据敏感:很多人在我面前说自己对数据敏感时,我每次都不以为意。因为我觉得数据敏感这个实际上是个伪概念,它更多的是一种(多接触数据之后的)结果,而非能力,尤其不是那种靠天赋的能力。如果非要说是一种能力,在我的理解范围内,我觉得数据敏感是一种建立在对业务足够理解的前提下,并且可以通过足够的训练获得的能力。没错,我想说的时候:不谈对业务的理解,只谈数据,我觉得这是在耍流氓。
C、数据的根本用途就是提供决策依据,减少不确定性。现在人们的决策,大多数是靠感觉,靠跟风,靠个人经验,只有很少部分是客观数据分析。数据,提供了一种更为可靠的决策依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13