数据科学家、数据工程师、数据分析师,如何区分这三个大数据热门职业
随着大数据的愈演愈热,相关大数据的职业也成为热门,给人才发展带来带来了很多机会。数据科学家、数据工程师、数据分析师已经成为大数据行业最热门的职位。它们是如何定义的?具体是做什么工作的?需要哪些技能?让我们一起来看看吧。
这3个职业是如何定位的?
数据科学家是个什么样的存在
数据科学家是指能采用科学方法、运用数据挖掘工具对复杂多量的数字、符号、文字、网址、音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师)。
数据工程师是如何定义的
数据工程师一般被定义成“深刻理解统计学科的明星软件工程师”。如果你正为一个商业问题烦恼,那么你需要一个数据工程师。他们的核心价值在于他们借由清晰数据创建数据管道的能力。充分了解文件系统,分布式计算与数据库是成为一位优秀数据工程师的必要技能。
数据工程师对演算法有相当好的理解。因此,数据工程师理应能运行基本数据模型。商业需求的高端化催生了演算高度复杂化的需求。很多时候,这些需求超过了数据工程师掌握知识范围,这个时候你就需要打电话寻求数据科学家的帮助。
数据分析师该如何理解
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。他们知道如何提出正确的问题,非常善于数据分析,数据可视化和数据呈现。
这3个职业具体有什么职责
数据科学家的工作职责
数据科学家倾向于用探索数据的方式来看待周围的世界。把大量散乱的数据变成结构化的可供分析的数据,还要找出丰富的数据源,整合其他可能不完整的数据源,并清理成结果数据集。新的竞争环境中,挑战不断地变化,新数据不断地流入,数据科学家需要帮助决策者穿梭于各种分析,从临时数据分析到持续的数据交互分析。当他们有所发现,便交流他们的发现,建议新的业务方向。他们很有创造力的展示视觉化的信息,也让找到的模式清晰而有说服力。把蕴含在数据中的规律建议给Boss,从而影响产品,流程和决策。
数据工程师的工作职责
分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务。通过这三个工作方向,他们帮助企业做出更好的商业决策。
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。比如,腾讯的数据团队正在搭建一个数据仓库,把公司所有网络平台上数量庞大、不规整的数据信息进行梳理,总结出可供查询的特征,来支持公司各类业务对数据的需求,包括广告投放、游戏开发、社交网络等。
找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。
通过引入关键因素,大数据工程师可以预测未来的消费趋势。在阿里妈妈的营销平台上,工程师正试图通过引入气象数据来帮助淘宝卖家做生意。比如今年夏天不热,很可能某些产品就没有去年畅销,除了空调、电扇,背心、游泳衣等都可能会受其影响。那么我们就会建立气象数据和销售数据之间的关系,找到与之相关的品类,提前警示卖家周转库存。
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。以腾讯来说,能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。
数据分析师的工作职责
互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。
与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。
此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。
想要从事这3个职业需要掌握什么技能?
数据科学家需要掌握的技能
1,计算机科学
一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。简单来说,就是对处理大数据所必需的hadoop、Mahout等大规模并行处理技术与机器学习相关的技能。
2,数学、统计、数据挖掘等
除了数学、统计方面的素养之外,还需要具备使用SPSS、SAS等主流统计分析软件的技能。其中,面向统计分析的开源编程语言及其运行环境“R”最近备受瞩目。R的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。此外,它还具备称为CRAN(The Comprehensive R Archive Network)的包扩展机制,通过导入扩展包就可以使用标准状态下所不支持的函数和数据集。
3,数据可视化(Visualization)
信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,开发Web原型,使用外部API将图表、地图、Dashboard等其他服务统一起来,从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
数据工程师需要掌握的技能
1,数学及统计学相关的背景
对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。缺乏理论背景的数据工作者,更容易进入一个技能上的危险区域(Danger Zone)—一堆数字,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。
2,计算机编码能力
实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。
3,对特定应用领域或行业的知识
大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。
数据分析师需要掌握的技能
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16