SPSS中正态分布检验
1、先做直方图看看是否大概符合正态分布,这个不用说了吧,Graph-->legacy dialogs-->histogram-->选入变量-->OK.如果距离正态分布的样子太远了,你就不要做下面的工作啦。
2、Analyze-->descriptive statistic-->explore-->选入变量-->选右上角的plots-->打开后,选中间的normally plots with tests -->OK。结果就出来啦。
3、它会用两种方法来检验正态分布,当sig>0.05时服从正态分布,如果不服从正态分布,就要看峰度和偏度啦:
偏度主要是研究分布形状是否对称。约=0 则可以认为分布是对称的;
>0 则可以认为右偏态,此时在均值右边的数据更为分散;
<0 则可以认为左偏态,同理。
峰度它是以正态分布为标准,比较两侧极端数据分布情况的指标。
正态的=0
>0 此时分布有一个沉重的尾巴,
<0 正好相反。
附加检验:
(Ⅱ)附加检验之一,观察正态概率图,如果数据来自正态分布,图形的散点应该呈现一条直线。用Plot绘制正态分布的概率图,里面的“+”构成一条直线(正态分布数据概率图散点应该成一条直线),“*”代表样本数据散点。根据“*”覆盖 “+”的程度,说明样本数据是否来自正态分布数据。
(Ⅲ)附加检验之二,绘制数据的条形图,如果数据来自正态分布,条形图呈现“钟形”分布。用histogram绘制直方图/normal在直方图中拟合正态分布的密度曲线,可以看到,曲线几乎是个标准钟形,可以认为数据是正态分布。
(Ⅳ)附加检验之三,观察描述性统计量中偏度系数(Skewness)g1和峰度系数(Kurtosis)g2,如果数据来自正态分布,则两者都应该是0。用g1,g2,бg1,бg2来计算U值,用U检验法。U1= 同理计算U2,要两个都小于1.96,即p大于0.05才可以。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20