热线电话:13121318867

登录
首页精彩阅读数据挖掘中所需的概率论与数理统计知识(五)
数据挖掘中所需的概率论与数理统计知识(五)
2014-11-29
收藏


数据挖掘中所需的概率论与数理统计知识(五)

拉普拉斯的工作

    在1772-1774年间,拉普拉斯也加入到了寻找误差分布函数的队伍中。与辛普森不同,拉普拉斯不是先假定一种误差分后去设法证明平均值的优良性,而是直接射向应该去怎么的分布为误差分布,以及在确定了误差分布之后,如何根据观测值去估计真值


    拉普拉斯假定误差密度函数f(x)满足如下性质:
    m>0,且为常数,上述方程解出,C>0且为常数,由于,得。故当x<0,结合概率密度的性质之一(参看上文2.2.4节):,解得c=m/2。
    由此,最终1772年,拉普拉斯求得的分布密度函数为:
    这个概率密度函数现在被称为拉普拉斯分布:
    以这个函数作为误差密度,拉普拉斯开始考虑如何基于测量的结果去估计未知参数的值,即用什么方法通过观测值去估计真值呢?要知道咱们现今所熟知的所谓点估计方法、矩估计方法,包括所谓的极大似然估计法之类的,当时可是都还没有发明。
    拉普拉斯可以算是一个贝叶斯主义者,他的参数估计的原则和现代贝叶斯方法非常相似:假设先验分布是均匀的,计算出参数的后验分布后,取后验分布的中值点,即1/2分位点,作为参数估计值。可是基于这个误差分布函数做了一些计算之后,拉普拉斯发现计算过于复杂,最终没能给出什么有用的结果,故拉普拉斯最终还是没能搞定误差分布的问题。
    至此,整个18世纪,可以说,寻找误差分布的问题,依旧进展甚微,下面,便将轮到高斯出场了,历史总是出人意料,高斯以及其简单的手法,给了这个误差分布的问题一个圆满的解决,其结果也就成为了数理统计发展史上的一块重要的里程碑。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询