如何建立落地型数据分析(挖掘)流程
数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析(挖掘)流程?
在做本篇介绍之前,有以下几个方向需要做一个界定,这些界定是做本篇的前提:
该项目流程是面向业务层的,直接通过模型做代码优化或者以BI技术为方向的不同;
该项目的领导者是具有一定能力的数据分析师,需要具备业务常识、数据理解能力和专项分析挖掘能力,说白了,能接受问题并且能解决问题;
该项目是以业务落地为导向的,那些面向市场分析方向的战略项目等不在此列。
在以上的界定下,我们放心的来谈本篇的核心,我相信大多数一线的数据分析师都能适用这套流程。完整的数据分析(挖掘)流程包括:需求提报审核、商业理解、数据理解、专项分析(建模)、部署与实施优化、项目总结六大部分。
一、需求提报
任何数据分析的起点都是从业务需求开始的。在收到业务需求后,首先要做的还不是业务够通,是考量这个需求是否可以受理。导致需求不能受理的原因包括业务需求本身是个伪命题以及目前的数据无法支撑该需求的分析。
目的:第一步需求提报的审核目的是找到最佳需求命题,并确定该命题的可行性。
输出物料:无
周期:1天内响应
二、商业理解
商业理解包括业务语言转化成数据语言的整个过程,目的是确定业务通过数据需要实现的具体纬度,粒度,数据范围等,通过方案思路进行二次确认。确认思路后,会正式开始项目的数据部分工作。
目的:确认业务逻辑、数据分析需求、数据产出内容方向及分析思路。
输出物料:分析思维导图、测试数据
周期:2天
三、数据准备
数据准备是对即将进行的分析和挖掘工作进行预处理,包括从数据仓库中取数,验证数据质量,数据特征提取,异常值处理,数据转换,合并等,为最终的数据分析挖掘做准备。这个阶段是非常费时但是重要的工作,前期这个工作做不好会直接影响数据质量。
目的:数据前期清洗。
输出物料:数据
周期:4天
四、专项分析(建模)
经过需求确认,数据清洗之后,开始了专项数据分析和挖掘工作,包括常用的描述性数据统计、数据分类、聚类、管理、序列、规则提取等建模工作,并在专项分析或建模结束后完成模型测试工作,保持模型的稳定性和最佳拟合度。
目的:报告撰写、模型搭建。
输出物料:分析报告、建模流程和节点、模型评估报告等
周期:7天
五、部署与实施优化
数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析(挖掘)流程?
在做本篇介绍之前,有以下几个方向需要做一个界定,这些界定是做本篇的前提:
该项目流程是面向业务层的,直接通过模型做代码优化或者以BI技术为方向的不同;
该项目的领导者是具有一定能力的数据分析师,需要具备业务常识、数据理解能力和专项分析挖掘能力,说白了,能接受问题并且能解决问题;
该项目是以业务落地为导向的,那些面向市场分析方向的战略项目等不在此列。
在以上的界定下,我们放心的来谈本篇的核心,我相信大多数一线的数据分析师都能适用这套流程。完整的数据分析(挖掘)流程包括:需求提报审核、商业理解、数据理解、专项分析(建模)、部署与实施优化、项目总结六大部分。
本阶段包括数据结果输出,方式可能是邮件、会议类(通常是二者配合),在业务报告沟通中确认落地执行计划,并安排排期和计划方案,同时数据分析师进行数据收集,等业务执行完毕后进行效果再评估,并根据评估结果优化前期报告或模型结果。
目的:数据落地。
输出物料:业务执行计划、落地排期、数据落地收集计划等
周期:14天(根据所需数据量和业务时间需求而定)
六、项目总结
在整个项目结束后,进行整体总结,反思本项目整个过程,包括前期需求沟通与确认是否清晰,中期数据处理、分析和挖掘如何优化,后期数据落地效果和建议等,对整个项目有新的认知,最终为下一次项目积累经验。如果有必要,可以跟业务一起沟通讨论本次项目的优劣得失。另外,不是所有的有效项目都是以成功结束,失败的项目也可以为我们带来启发,最起码能说明业务的逻辑或出发点不可行。
目的:经验总结
输出物料:项目总结报告
周期:1天
只会做挖掘、只会写报告的数据分析师只能算一半,另一半就是如何把我们的思想、建议融入业务中,真正让他们理解并付诸实践。这才是数据分析师存在的真正价值。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16