云计算、大数据、人工智能将使全社会迎来变革性的发展
2016年的互联网科技领域,云计算、 大数据 、人工智能成为最热词汇。阿里云“为了无法估算的价值”将中国的计算触角伸向海外,百度首次向外界展示“百度大脑”的科技成果,移动互联网利用人口红利带来的增长已经逐渐见顶,互联网正在进入“下一幕”智能时代,云计算、大数据、人工智能将使全社会迎来变革性的发展。
9月2日,方正证券主办的“云计算投融资高端论坛”在北京开幕,包括方正证券通信首席分析师马军、数据中心联盟秘书长孙明俊及世纪互联、恒宝股份、创维数字、光环新网等企业在内的行业专家就云计算、大数据的未来发展及未来投融资方向展开思想碰撞。
技术发展成为产业发展走向繁荣最大的前提
无论是计算机行业还是在汽车领域,技术形态的成熟是一个必然的要素。如果某个所谓的时代在技术上、硬件上没有达到产业的要求,数据库和平台都是非完整和非稳定,时代的产业基础也就十分薄弱。从产业的政策角度分析,当技术累积到一定层次,产业政策的出台是必然的。如同为了激活云计算的发展,国务院在2015年就出台了《关于促进云计算创新发展培育信息产业新业态的意见》,以及《云计算白皮书2016》等,这些政策的出现并非偶然,在其背后有很多云计算服务商多年默默的技术耕耘。
技术和政策的形态达到一定的地步,真正的产业化和市场化是否也已经达到?等待入局者必须考虑几个重要因素:一是目的是什么(为了降低成本、提高效率,还是在渠道上更接近用户)?二是企业是否愿意使用(产品同质化严重,如何体现差异化)?三是是否有助于提高社会福利(消费者福利、管理效率)?如果这些思考得到肯定的答案,云计算与时代的发展需求相契合,真正的时代大门就会开启。
云服务的发展趋势将会是:建立公有云生态圈、私有云共推开源、云安全成关键、政府推动和云保险出现。
从产业生态来看,公有云服务商构建了以“我”为主的生态圈,做生态圈已经越来越成为大的公有云服务商的选择。
私有云的供应商,走上了一条“抱团取暖,共推开源”的道路。在开源社区,众筹式发展的局面已经基本形成,热点开源社区的产品技术能力也在一步步提升。
物理设施故障和系统漏洞成为云安全最主要的威胁。云服务商与云数据中心资源的规模化和击中化、数据中心和网络链路等物理设施的人为破坏和故障造成的影响进一步扩大,对服务商的运维水平提出了巨大考验。
国内云服务商开始从内向型向外向型转变,并有开始面向全球发展的态势,尤其是在北美。企业在推“云计算+”,国家在推“互联网+”,现在政府采购云计算的案例已经比比皆是,云服务商的数据中心也已经在各地生根发芽。
云保险是由数据中心联盟提出、人保牵头、中国平安和渤海保险共同组成的共保体,完成一个新型的保险业务。另外云计算对于数据中心和设备提出新要求,数据中心产业一直在不断的演进和变化。
大数据本身除了要有数据、采集,汇聚一定量的数据之外,更重要的是在数据的处理、挖掘、分析、可视化、应用这样一整套的过程。
围绕大数据的话题基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。任何大数据都是以应用为主的,在未来,多维度、多复合的大数据的精准挖掘,提供优质的的商务解决方案才最关键。
数据的三个来源分别是政府、企业行业和个人消费。政府数据做了授权,但由于法律和其他方面的不健全,政府数据被滥用。消费者数据来源于电信、金融或类似BAT大企业,流量入口处的数据将被自动抓取,数据提供商可以提供所有维度的数据,但每一个都是局部。
数据优化商在大数据产业链里要想长久发展,必须精通大数据的模型、算法以及数据特征,同时对行业及生态要有明显的敏感性。而算法提供商如果仅仅依赖单纯算法,未来将成为成长软肋。应用提供商最贴近客户、最熟悉客户需求,同时做的是最后的数据整合,在产业链上可能发展空间更大。
IDC行业未来具有很大的发展潜力。中国具有高达6.3亿的大规模网民群体,目前国内仅有3万个机柜,对比美国的3亿群体2.4万个机柜可以看出,中国的数据市场规模还远未达到平衡点,未来将保持高速增长的态势。另一个方面由于企业客户运营模式的改革,企业的云化增加了对大数据及专业数据中心的需求。
未来云计算产业和大数据产业将呈现规模化发展趋势,市场红利可观,创新、服务、合作、技术将推动互联网科技企业走得更高、更远。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21