大数据全面渗透人类生活,未来几年将渐入理性发展期
大数据正渐渐的从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。有网络就有大数据,无论是个人手机拍照、发微信、微博互动,还是各个企业里发生的人事、财务、供应链、管理系统等产生的大量数据,通过网络汇集到一起产生的价值无可估量。
随着IT技术不断发展,我们已经进入到了大数据的时代,人类将在2020年创造出40ZB的数据量。在这种疯狂增长的背后大数据有以下七个趋势是我们不得不了解的。
技术的突破将使传感器体积微型化,它将出现在生产生活的每一个角落,甚至以靶向缓释胶囊形态进入人体内部,监测化学环境及组织器官的细微变化。
成本降低后,传感器不再需要回收,而像月抛隐形眼镜般一次性使用,完成使命后自动废弃,而新的传感器则源源不断地补充数据源;传感器节点数将达到万亿级别,其数据量将超过人类日常总传送数据量的百分之八十,新的低能耗无线通信标准诞生。
Google、百度、亚马逊等巨头将建立起完善的大数据服务基础架构及商业化模式,从数据的存储、挖掘、管理、计算等方面提供一站式服务,将各行各业的数据孤岛打通互联。
在用户与数据服务商之间是算法提供商,他们雇佣专业领域的精英人才与数据科学家,通过数据挖掘的方式,寻找事物间的联系。
而用户所需要做的便是像今天下载手机App一样,选择相应的数据服务端,付费,享受“N=All”的实时数据所带来的深刻洞察与行动指南。
个人的生活数据将被实时采集上传,饮食、健康、出行、家居、医疗、购物、社交,大数据服务将被广泛运用并对用户生活质量产生革命性的提升,一切服务都将以个性化的方式为每一个“你”量身定制,为每一个行为提供基于历史数据与实时动态所产生的智能决策。
如Alistair Croll所说:数据驱动下的世界给人最大的威胁是道德方面。我们以共享资源的方式分担风险(如保险),我们越是能预测未来,我们越不愿意和别人分享。
个人数据资产所有权,属于个人或是公司?隐私的边界何在?当公共利益与个人隐私发生冲突时如何抉择?数据是否具有地域性,如何处理跨国存储及管理的数据服务案件,等等。技术的发展将会倒逼国际社会制定并完善相应法律,而跨国企业将在其中扮演主导作用。
反过来,法律的制定也将推动数据安全技术的进步,智能程序将能根据不同情境启用相应的隐私级别,隔绝数据采集的“私密空间”将成为新的服务热点。
从苹果的Siri到Google的机器翻译,再到百度的深度学习及“百度大脑”,商业与技术的频繁互动将极大提升人工智能的进化速度。机器将得以理解人类文字、语音、图像、动作甚至表情背后的微妙含义,并以大数据为支撑,为人类提供效率与个性兼备的决策与服务。
想象一次旅行,人工智能分析你以往出行记录以及近期生活轨迹,结合对各大旅游景点、交通状况、天气预测等数据分析,提供给你最贴合心意的目的地,规划好线路的无人驾驶车辆依照行程将你送至景点,并根据你的行程及时调配车辆接送。
所有的酒店、餐饮、服务都已经依照你的生活数据进行深度订制,机器甚至会提醒你将美好时刻记录下来,发送给相关好友,提升关系的亲密度。而你遇到的所有异国文字和语言,都将经由翻译器实时转化为你的母语。这只是诸多场景中较简单的一个切片。
结合人工智能的机器人技术将取代从事简单机械劳动的人类,以及部分服务性行业,劳动力过剩将成为突出社会问题,也许电影《Her》中爱上程序的故事或将成为现实。
传统的劳动关系及组织形态将被打破,劳动者以液态形式自由流动结合,成为“液态公司”,通过大数据平台,将客户需求与人力资源进行精确匹配,个体能够最大限度地发挥潜能,同时打破地域、语言及文化的障碍,全球协作成为大趋势。
婚恋模式全面转型,个体可根据不同关系需要由大数据服务商进行精确匹配,确保身心、经济、价值观及生活方式上真正的“Match”,并订立有时效性的契约式关系。
传统家庭模式进入重塑阶段,人以群分变成人以“数”分,带有相似数据特征的群体会以类似公社形式聚居,以实现资源整合与生活方式上的高效和谐。
国际化大品牌以深度数据分析,聚集忠实核心用户群,并开发上下游生活方式产品服务,形成凝聚力极高的 “品牌部落”概念,人群甚至会以品牌作为图腾、姓氏或精神信仰。
科研领域由传统的“现象观察-理论假设-实践验证”范式,变迁为“数据挖掘-抽象模型-扩展应用”,由理念到实际应用的路径将被大大缩短,全面提升技术进步速度。
人从机械重复的低级劳动中被解放,投身更具价值的创造过程。大数据将帮助人类发现激发创造力与幸福感的有效机制,社会由物质文明进入灵性文明的新纪元。
这些设想听上去似乎像是天方夜谭,但电话、飞机、互联网,哪个不是曾经的奇想?当二十年后我们回首今天,这个被称为大数据元年的特殊时间点,许多事情已经悄悄地埋下伏笔:顶尖人工智能专家、Google大脑之父吴恩达加盟百度;Google低调收购大量机器人公司;微软发布虚拟个人助手Cortana,宣称正处于“人工智能的春天”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21